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The quantum formalism is a "measurement" formalism--a phenomenological 
formalism describing certain macroscopic regularities. We argue that it can be 
regarded, and best be understood, as arising from Bohmian mechanics, which is 
what emerges from Schr6dinger's equation for a system of particles when we 
merely insist that "particles" means particles. While distinctly non-Newtonian, 
Bohmian mechanics is a fully deterministic theory of particles in motion, a 
motion choreographed by the wave function. We find that a Bohmian universe, 
though deterministic, evolves in such a manner that an appearance of random- 
ness emerges, precisely as described by the quantum formalism and given, for 
example, by "p = IV[ 2.,, A crucial ingredient in our analysis of the origin of this 
randomness is the notion of the effective wave function of a subsystem, a notion 
of interest in its own right and of relevance to any discussion of quantum 
theory. When the quantum formalism is regarded as arising in this way, the 
paradoxes and perplexities so often associated with (nonrelativistic) quantum 
theory simply evaporate. 
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1. I N T R O D U C T I O N  

I am, in fact, rather firmly convinced that the essentially statistical character of 
contemporary quantum theory is solely to be ascribed to the fact that this 
[ theory] operates with an incomplete description of physical systems. (Einstein, 
in ref. 50, p. 666) 
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What is randomness? probability? certainty? knowledge? These are old and 
difficult questions, and we shall not focus on them there. Nonetheless, 
we shall obtain sharp, striking conclusions concerning the relationship 
between these concepts. 

Our primary concern in this paper lies with the status and origin of 
randomness in quantum theory. According to the quantum formalism, 
measurements performed on a quantum system with definite wave function 

typically yield random results. Moreover, even the specification of 
the wave function of the composite system including the apparatus for 
performing the measurement will not generally diminish this randomness. 
However, the quantum dynamics governing the evolution of the wave func- 
tion over time, at least when no measurement is being performed, and 
given, say, by Schr6dinger's equation, is completely deterministic. Thus, 
insofar as the particular physical processes which we call measurements are 
governed by the same fundamental physical laws that govern all other 
processes, 4 one is naturally led to the hypothesis that the origin of the 
randomness in the results of quantum measurements lies in random initial 
conditions, in our ignorance of the complete description of the system 
of interest--including the apparatus--of  which we know only the wave 
function. 

But according to orthodox quantum theory, and most nonorthodox 
interpretations as well, the complete description of a system is provided by 
its wave function alone, and there is no property of the system beyond its 
wave function (our ignorance of) which might account for the observed 
quantum randomness. Indeed, it used to be widely claimed, on the 
authority of von Neumann, ~56) that such properties, the so-called hidden 
variables, are impossible, that as a matter of mathematics, averaging over 
ignorance cannot reproduce statistics compatible with the predictions of 
the quantum formalism. And this claim is even now not uncommon, 
despite the fact that a widely discussed counterexample, the quantum 
theory of David Bohm, (13' 14) has existed for almost four decades. 5 

We shall call this theory, which will be "derived" and described 
in detail in Section 3, Bohmian mechanics. Bohmian mechanics is a new 
mechanics, a completely deterministic--but distinctly non-Newtonian--  

4 And it is difficult to believe that this is not so; the very notion of measurement itself seems 
too imprecise to allow such a distinction within a fundamental theory, even if we were 
otherwise somehow attracted by the granting to measurement of an extraordinary status. 

5 For an analysis of why yon Neumann's and related "impossibility proofs" are not nearly so 
physically relevant as frequently imagined, see Bell's articleJ 2~ (See also the celebrated article 
of Bell t3~ for an "impossibility proof" which does have physical significance. See as well 
ref. 6.) For a recent, and comprehensive, account of Bohm's ideas see ref. 20. 
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theory of particles in motion, with the wave function itself guiding this 
motion. (Thus, the "hidden variables" for Bohmian mechanics are simply 
the particle positions themselves.) Moreover, while its formulation does 
not involve the notion of quantum observables, as given by self-adjoint 
operators--so that its relationship to the quantum formalism may at first 
appear somewhat obscure--it can in fact be shown that Bohmian 
mechanics not only accounts for quantum phenomena, (~4'15'18) but also 
embodies the quantum formalism itself as the very expression of its empiri- 
cal import. (29) (The analysis in the present paper establishes agreement 
between Bohmian mechanics and the quantum formalism without 
addressing the question of how the detailed quantum formalism naturally 
emerges--how and why specific operators, such as the energy, momentum, 
and angular momentum operators, end up playing the roles they do, as 
well as why "observables" should rather generally be identified with 
self-adjoint operators. We shall answer these questions in ref. 29, in 
which a general analysis of measurement from a Bohmian perspective is 
presented. We emphasize that the present paper is not at all concerned 
directly with measurement per se, not even of positions.) That this is so is 
for the most part quite straightforward, but it does involve a crucial 
subtlety, which, so far as we know, has never been dealt with in a 
completely satisfactory manner. 

The subtlety to which we refer concerns the origin of the very random- 
ness so characteristic of quantum phenomena. The predictions of Bohmian 
mechanics concerning the results of a quantum experiment can easily be 
seen to be precisely those of the quantum formalism, provided it is assumed 
that prior to the experiment the positions of the particles of the systems 
involved are randomly distributed according to Born's statistical law, i.e., 
according to the probability distribution given by f O12. And the difficulty 
upon which we shall focus here concerns the status--the justification and 
significance--of this assumption within Bohmian mechanics: not just why 
it slhould be satisfied, but also, and perhaps more important, what--in a 
completely deterministic theory--it could possibly mean! 

In Section 2 we provide some background to Bohmian mechanics, 
describing its relationship to other approaches to quantum mechanics and 
how in fact it emerges from an analysis of these alternatives. This section, 
which presents a rather personal perspective on these matters, will play no 
role in the detailed analysis of the later sections and may be skipped on a 
first reading of this paper. 

The crucial concepts in our analysis of Bohmian mechanics are those 
of effective wave function (Section 5) and quantum equilibrium (Sections 4, 
6, 13, and 14). The latter is a concept analogous to, but quite distinct from, 
tlhermodynamic equilibrium. In particular, quantum equilibrium provides 
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us with a precise and natural notion of typicality (Section 7), a concept 
which frequently arises in the analysis of "large systems" and of the 
"long-time behavior" of systems of any size. For a universe governed by 
Bohmian mechanics it is of course true that, given the initial wave function 
and the initial positions of all particles, everything is completely determined 
and nothing whatsoever is actually random. Nonetheless, we show that 
typical initial configurations, for the universe as a whole, evolve in such 
a way as to give rise to the appearance of randomness, with empirical 
distributions (Sections 7 and 10) in agreement with the predictions of the 
quantum formalism. 

From a general perspective, perhaps the most noteworthy consequence 
of our analysis concerns absolute uncertainty (Section 11). In a universe 
governed by Bohmian mechanics there are sharp, precise, and irreducible 
limitations on the possibility of obtaining knowledge, limitations which can 
in no way be diminished through technological progress leading to better 
means of measurement. 

This absolute uncertainty is in precise agreement with Heisenberg's 
uncertainty principle. But while Heisenberg used uncertainty to argue for 
the meaninglessness of particle trajectories, we find that, with Bohmian 
mechanics, absolute uncertainty arises as a necessity, emerging as a 
remarkably clean and simple consequence of the existence of trajectories. 
Thus, quantum uncertainty, regarded as an experimental fact, is explained 
by Bohmian mechanics, rather than explained away as it is in orthodox 
quantum theory. 

Our analysis covers all of nonrelativistic quantum mechanics. 
However, since our concern here is mainly conceptual, we shall for 
concreteness and simplicity consider only particles without spin, and shall 
ignore indistinguishability and the exclusion principle. Spin and permuta- 
tion symmetry arise naturally in Bohmian mechanics, (2"3~ and an 
analysis explicitly taking them into account would differ from the one given 
here in no essential way. 

In fact, our analysis really depends only on rather general qualitative 
features of the structure of abstract quantum theory, not on the details of 
any specific quantum theory--such as nonrelativistic quantum mechanics 
or a quantum field theory. In particular, the analysis does not require a 
particle ontology; a field ontology, for example, would do just as well. 

Our analysis is, however, fundamentally nonrelativistic. It may well be 
the case that a fully relativistic generalization of the kind of physics 
explored here requires new concepts~28'9'16'55~--if not new mathematical 
structures. But if one has not first understood the nonrelativistic case, one 
could hardly know where to begin for the relativistic one. 

Perhaps this paper should be read in the following spirit: In order to 



Quantum Equilibrium and Absolute Uncertainty 847 

grasp the essence of Quantum Theory, one must first completely under- 
stand a t  l ea s t  o n e  quantum theory. 

2. REALITY A N D  T H E  ROLE OF THE W A V E  F U N C T I O N  

For each measurement one is required to ascribe to the ~-function a charac- 
teristic, quite sudden change, which depends on the measurement result obtained, 
and so cannot be forseen; from which alone it is already quite clear that this 
second kind of change of the 0-function has nothing whatever in common with 
its orderly development between two measurements. The abrupt change by 
measurement.., is the most interesting point of the entire theory .... For this 
reason one can not put the tp-function directly in place of... the physical thing ... 
because in the realism point of view observation is a natural process like any 
other and cannot per se bring about an interruption of the orderly flow of 
natural events. (Schr6dinger ~51)) 

The conventional wisdom that the wave function provides a complete 
description of a quantum system is certainly an attractive possibility: other 
things being equal, monism-- the  view that there is but one kind of 
reality--is perhaps more alluring than pluralism. But the problem of the 
origin of quantum randomness, described at the beginning of Section 1, 
already suggests that other things are not, in fact, equal. 

Moreover,  wave function monism suffers from another serious defect, 
to which the problem of randomness is closely related: Schr6dinger's evolu- 
tion tends to produce spreading over configuration space, so that the wave 
function 0 of a macroscopic system will typically evolve to one supported 
by distinct, and vastly different, macroscopic configurations, to a grotesque 
macroscopic superposition, even if 0 were originally quite prosaic. This is 
precisely what happens during a measurement, over the course of which the 
wave function describing the measurement process will become a super- 
position of components corresponding to the various apparatus readings to 
which the quantum formalism assigns nonvanishing probability. And the 
,difficulty with this conception, of a world c o m p l e t e l y  described by such an 
,exotic wave function, is not even so much that it is extravagantly bizarre, 
but rather that this c o n c e p t i o n - o r  better our place in it, as well as that of 
the random events which the quantum formalism is supposed to govern-- is  
exceedingly obscure. (What we have just described is often presented more 
colorfully as the paradox of Schr6dinger's cat. ~51)) 

What  has just been said supports, not the impossibility of wave func- 
tion monism, but rather its incompatibility with the Schr6dinger evolution. 
And the allure of wave function monism is so strong that most interpreta- 
tions of quantum mechanics in fact involve the abrogation of Schr6dinger's 
equation. This abrogation is often merely implicit and, indeed, is often 
presented as if it were compatible with the quantum dynamics. This 
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is the case, for example, when the measurement postulates, regarded as 
embodying "collapse of the wave packet," are simply combined with 
Schr6dinger's equation in the formulation of quantum theory. The 
"measurement problem" is merely an expression of this inconsistency. 

There have been several recent proposals--for example, by Wigner, (63) 
Leggett, (42) Stapp, (55) Weinberg, (57~ and Penrose (48) (see also ref. 49)-- 
suggesting explicitly that the quantum evolution is not of universal validity, 
that under suitable conditions, encompassing those which prevail during 
measurements, the evolution of the wave function is not governed by 
Schr6dinger's equation (see also ref. 59). A common suggestion is that the 
quantum dynamics should be replaced by some sort of "nonlinear" 
(possibly nondeterministic) modification, to which, on the microscopic 
level, it is but an extremely good approximation. One of the most concrete 
proposals along these lines is that of Ghirardi et al. (GRW). (33) 

The theory of GRW modifies Schr6dinger's equation by the incorpora- 
tion of a random "quantum jump," to a macroscopically localized wave 
function. As an explanation of the origin of quantum randomness it is thus 
not very illuminating, accounting, as it does, for the randomness in a rather 
ad hoc manner, essentially by fiat. Nonetheless this theory should be com- 
mended for its precision, and for the light it sheds on the relationship 
between Lorentz invariance and nonlocalityJ 9) 

A related, but more serious, objection to proposals for the modifica- 
tion of Schr6dinger's equation is the following: The quantum evolution 
embodies a deep mathematical beauty, which proclaims "Do not tamper! 
Don't degrade my integrity!" Thus, in view of the fact that (the relativistic 
extension of) Schr6dinger's equation, or, better, the quantum theory, in 
which it plays so prominent a role, has been verified to a remarkable--and 
unprecedented~egree, these proposals for the modification of the 
quantum dynamics appear at best dubious, based as they are on purely 
conceptual, philosophical considerations. 

But is wave function monism really so compelling a conception that 
we must struggle to retain it in the face of the formidable difficulties it 
entails? Certainly not! In fact, we shall argue that even if there were no 
such difficulties, even in the case of "other things being equal," a strong 
case can be made for the superiority of pluralism. 

According to (pre-quantum-mechanical) scientific precedent, when 
new mathematically abstract theoretical entities are introduced into a 
theory, the physical significance of these entities, their very meaning insofar 
as physics is concerned, arises from their dynamical role, from the role they 
play in (governing) the evolution of the more primitive--more familiar and 
less abstract--entities or dynamical variables. For example, in classical 
electrodynamics the meaning of the electromagnetic field derives solely from 
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the Lorentz force equation, i.e., from the field's role in governing the evolu- 
tion of the positions of charged particles, through the specification of the 
forces, acting upon these particles, to which the field gives rise; while in 
general relativity a similar statement can be made for the gravitational 
metric tensor. That this should be so is rather obvious: Why would these 
abstractions be introduced in the first place, if not for their relevance to 
the behavior of something else, which somehow already has physical 
significance? 

Indeed, it should perhaps be thought astonishing that the wave 
function was not also introduced in this way--insofar as it is a field on 
configuration space rather than on physical space, the wave function is an 
abstraction of even higher order than the electromagnetic field. 

But, in fact, it was! The concept of the wave function originated 
in 1924 with de Broglie, (24) who--intrigued by Einstein's idea of the 
"Gespensterfeld"--proposed that just as electromagnetic waves are some- 
how associated with particles, the photons, so should material particles, in 
particular electrons, be accompanied by waves. He conceived of these 
waves as "pilot waves," somehow governing the motion of the associated 
particles in a manner which he only later, in the late 1920s, made 
explicit. (25~ However, under an onslaught of criticism by Pauli, he soon 
abandoned his pilot wave theory, only to return to it more than two 
decades later, after his ideas had been rediscovered, extended, and vastly 
refined by Bohm. (13'14) 

Moreover, in a paper written shortly after Schr6dinger invented wave 
mechanics, Born, too, explored the hypothesis that the wave function 
might be a "guiding field" for the motion of the electron. (23) As conse- 
quences of this hypothesis, Born was led in this paper both to his statistical 
interpretation of the wave function and to the creation of scattering theory. 
Born did not explicitly specify a guiding law, but he did insist that the wave 
function should somehow determine the motion of the electron only 
statistically, that deterministic guiding is impossible. And, like de Broglie, 
he later quickly abandoned the guiding field hypothesis, in large measure 
owing to the unsympathetic reception of Heisenberg, who insisted that 
physical theories be formulated directly in terms of observable quantities, 
like spectral lines and intensities, rather than in terms of microscopic 
trajectories. 

The Copenhagen interpretation of quantum mechanics can itself be 
regarded as giving the wave function a role in the behavior of something 
etse, namely of certain macroscopic objects, called "measurement 
instruments," during "quantum measurements. ''(12'4~ Indeed, the most 
modest attitude one could adopt toward quantum theory would appear to 
be that of regarding it as a phenomenological formalism, roughly 



850 Diirr et  al.  

analogous to the thermodynamic formalism, for the description of certain 
maeroscopic regularities. But it should nonetheless strike the reader as 
somewhat odd that the wave function, which appears to be the fundamen- 
tal theoretical entity of the fundamental theory of what we normally regard 
as microscopic physics, should be assigned a role on the level of the 
macroscopic, itself an imprecise notion, and specifically in terms, even 
less precise, of measurements, rather than on the microscopic level. 

Be that as it may, the modest position just described is not a stable 
one: It raises the question of how this phenomenological formalism arises 
from the behavior of the microscopic constituents of the macroscopic 
objects with which it is concerned. Indeed, this very question, in the con- 
text of the thermodynamic formalism, led to the development of statistical 
mechanics by Boltzmann and Gibbs, and, with some help from Einstein, 
eventually to the (almost) universal acceptance of the atomic hypothesis. 

Of course, the Copenhagen interpretation is not quite so modest. It 
goes further, insisting upon the impossibility of just such an explanation of 
the (origin of the) quantum formalism. On behalf of this claim--which is 
really quite astounding in that it raises to a universal level the personal 
failure of a generation of physicists to find a satisfactory objective descrip- 
tion of microscopic processes--the arguments which have been presented 
are not, in view of the rather dramatic conclusions that they are intended 
to establish, as compelling as might have been expected. Nonetheless, the 
very acceptance of these arguments by several generations of physicists 
should lead us to expect that, if not impossible, it should at best be extra- 
ordinarily difficult to account for the quantum formalism in objective 
microscopic terms. 

Exhortations to the contrary notwithstanding, suppose that we do 
seek a microscopic origin for the quantum formalism, and that we do this 
by trying to find a role on the microscopic level for the wave function, 
relating it to the behavior of something else. How are we to proceed? A 
modest proposal: First try the obvious! Then proceed to the less obvious 
and, as is likely to be necessary, eventually to the not-the-least-bit-obvious. 
We shall implement this proposal here, and shall show that we need 
nothing but the obvious! (insofar as nonrelativistic quantum mechanics is 
concerned). 

What we regard as the obvious choice of primitive ontology--the 
basic kinds of entities that are to be the building blocks of everything else 
(except, of course, the wave function)--shoutd by now be clear: Particles, 
described bytheir  positions in space, changing with time--some of which, 
owing to the dynamical laws governing their evolution, perhaps combine to 
form the familiar macroscopic objects of daily experience. 

However, the specific role the wave function should play in governing 
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the motion of the particles is perhaps not so clear, but for this, too, we 
shall find that there is a rather obvious choice, which when combined with 
Schr6dinger's equation becomes Bohmian mechanics. (That an abstraction 
:such as the wave function, for a many-particle system a field that is not on 
physical space but on configuration space, should be a fundamental 
theoretical entity in such a theory appears quite natural--as a compact 
expression of dynamical principles governing an evolution of configura- 
tions. 6 ) 

3. B O H M I A N  M E C H A N I C S  

...in physics the only observations we must consider are position observat ions ,  
if only the positions of instrument pointers. It is a great merit of the de 
Broglie-Bohm picture to force us to consider this fact. If you make axioms, 
rather than definitions and theorems, about  the "measurement" of anything else, 
then you commit redundancy and risk inconsistency. (Bell 181) 

Consider a quantum system of N particles, with masses rn 1 ..... mN and 
]position coordinates ql ..... qN, whose wave function ~p=O(ql,..., qx, t) 
satisfies Schr6dinger's equation 

i ]~2 
i~l = - - k = l ~ m k A k @ - ~  g@ (3 .1 )  

whereA k = V k . V k =  2 ~ 2 ~? /eqk and V= V(ql,..., qN) is the potential energy of 
the system. 

Suppose that the wave function ~ does not provide a complete 
description of the system, that the most basic ingredient of the description 
of the state at a given time t is provided by the positions q~ ..... qN of its 
particles at that time, and that the wave function governs the evolution of 
(the positions of) these particles. Insofar as first derivatives are simpler 
than higher derivatives, the simplest possibility would appear to be that the 
wave function determine the velocit ies v~ ..... v~ of all the particles. Here 
v ~ -  v~(ql,..., qN) is a velocity vector field, on configurat ion space, for the 
k t h  particle, i.e., 

dqk = v~(ql ..... qN) (3.2) 
dt 

6 However, with wave function monism, without such a role and, indeed, without particle posi- 
tions from which to form configurations, how can we make sense of a field on the space of 
configurations? We might well ask "What configurations?" (And the wave function really is 
on configuration space--i t  is in this representation that quantum mechanics assumes its 
simplest form!) 
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Since (3.1) and (3.2) are first-order differential equations, it would 
then follow that the state of the system is indeed given by ~ and 
q =  (ql,..-, qu) - t h e  specification of these variables at any time would 
determine them at all times. 

Since two wave functions of which one is a nonzero constant multiple 
of the other should be physically equivalent, we demand that v~ be 
homogeneous of degree 0 as a function of ~, 

v2 ~ = vk ~ (3.3) 

for any constant c r O. 
In order to arrive at a form for v~ we shall use symmetry as our main 

guide. Consider first a single free particle of mass m, whose wave function 
if(q) satisfies the free Schr6dinger equation 

0 0 h 2 
ih - A6 (3.4) 

•t 2m 

We wish to choose v ~' in such a way that the system of equations given by 
(3.4) and 

~ = v O ( q )  (3.5) 

is Galilean and time-reversal invariant. [Note that a first-order 
(Aristotelian) Galilean invariant theory of particle motion may appear to 
be an oxymoron.]  Rotation invariance, with the requirement that v ~ be 
homogeneous of degree 0, yields the form 

v0 

where ~ is a constant scalar, as the simplest possibility. 
This form will not in general be real, so that we should perhaps take 

real or imaginary parts. Time-reversal is implemented on 0 by the involu- 
tion 0 ~ ~* of complex conjugation, which renders Schr6dinger's equation 
time-reversal invariant. If the full system, including (3.5), is also to be time- 
reversal invariant, we must thus have that 

which selects the form 

with e real. 

v ~ = - v  ~ (3.6) 

v ~ = c~ Im V__~ (3.7) 
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Moreover, the constant e is determined by requiring full Galilean 
invariance: Since v ~ must transform like a velocity under boosts, which are 
implemented on wave functions by 0 ~ exp[(im/h) vo" q] ~, invariance 
under boosts requires that c~ = h/m, so that (3.7) becomes 

v0 = h  Im V____~0 (3.8) 
m 

For a general N-particle system, with general potential energy V, we 
define the velocity vector field by requiring (3.8) for each particle, i.e., by 
letting 

v~= h Im VkO (3.9) 
mk 

so that (3.2) becomes 

dq~dt mkh Im ~ (ql  ,"-, qN) (3.10) 

We have arrived at Bohmian mechanics: for our system of N particles 
the state is given by 

(q, ~,) (3.11) 

and the evolution by 

dqkdt =--mkh Im ~ (ql ,..., qN) 

ih O~ ~ h 2 
a t  = -  m akO + v o  

k = l  

(3.12) 

We note that Bohmian mechanics is time-reversal invariant, and that 
it is Galilean invariant whenever V has this property, e.g., when V is the 
sum of a pair interaction of the usual form, 

g ( q l  ..... qN) = ~ q~(Iqi--qjl) (3.13) 
i < j  

However, our analysis will not depend on the form of V. 
Note also that Bohmian mechanics depends only upon the Rieman- 

nian structure g = (g,j) = (migij) defined by the masses of the particles: In 
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terms of this Riemannian structure, the evolution equations (3.1) and 
(3.10) of Bohmian mechanics become 

. grad 0 dq = h 'm - - - - ~  ( q 

c3~, h 2 (3.14) 

ih Ot 2 AO + V~p 

where q = (q~,..., qN) is the configuration, and A and grad are, respectively, 
the Laplace-Beltrami operator and the gradient on the configuration space 
equipped with this Riemannian structure. 

While Bohmian mechanics shares Schr6dinger's equation with the 
usual quantum formalism, it might appear that they have little else in com- 
mon. After all, the former is a theory of particles in motion, albeit of an 
apparently highly nonclassical, non-Newtonian character; while the obser- 
vational content of the latter derives from a calculus of noncommuting 
"observables," usually regarded as implying radical epistemological innova- 
tions. Indeed, if the coefficient in the first equation of (3.12) were other 
than h/m k, i.e., for general constants e~, the corresponding theory would 
have little else in common with the quantum formalism. But for the par- 
ticular choice of ek, of the coefficient in (3.12), which defines Bohmian 
mechanics, the quantum formalism itself emerges as a phenomenological 
conseqtlence of this theory. 

What makes the choice c~k=h/mk special--apart from Galilean 
invariance, which plays little or no role in the remainder of this paper--is 
that with this value, the probability distribution on configuration space 
given by ]0(q)12 possesses the property of equivariance, a concept to which 
we now turn. 

Note well that O on the right-hand side of (3.2) or (3.10) is a solution 
to Schr6dinger's equation (3.1) and is thus time-dependent, 0=0( t ) .  
It follows that the vector field v~, the right-hand side of (3.10), will in 
general be (explicitly) time-dependent. Therefore, given a solution 0 to 
Schr6dinger's equation, we cannot in general expect the evolution on 
configuration space defined by (3.10) to possess a stationary probability 
distribution, an object which very frequently plays an important role in the 
analysis of a dynamical system. 

However, the distribution given by ]~k(q)]2 plays a role similar to that 
of--and for all practical purposes is just as good as--a stationary one: 
Under the evolution p(q, t) of probability densities, of ensemble densities, 
arising from (3.10), given by the continuity equation 

~t + div(pv ~ ) = 0 (3.15) 
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with v ~ = (v1r V'N) the configurat ion space velocity arising from @ and div 
the divergence on configurat ion space, the density p = I@l 2 is s tat ionary 
relative to @, i.e., p(t) retains its form as a functional of @(t). In other  
words, 

if p(q, to) = J@(q, to)l 2 at some time to 

then p(q , t )= lO(q , t )12 fora l l t  
(3.16) 

We say that such a distribution is equivariant. 7 
To see that  [@12 is, in fact, equivariant,  observe that 

J ~  j@12v6 (3.17) 

where J~' = (Jl* ..... JOu) is the quan tum probabil i ty current, 

h *) (3.ig) 

Thus p(q, t )= I@(q, 012 satisfies (3.15). 
N o w  consider a quan tum measurement,  involving an interaction 

between a system "under  observat ion" and an apparatus  which performs 
the "observation." Let @ be the wave function and q = (qsys, qapp) the con- 
figuration of  the composi te  system of system and apparatus.  Suppose that 
w i o r  to the measurement,  at time ti, q is random,  with probabil i ty dis- 
t r ibution given by p(q, t i )=  I@(q, li)[ 2. When the measurement  has been 
completed, at time (r, the configurat ion at this time will, of course, still be 
random,  as will typically be the outcome of the measurement,  as given by 
appropr ia te  apparatus  variables, for example, by the orientat ion of a 
pointer  on a dial or  by the pat tern of ink marks on paper. Moreover ,  by 
equivariance, the distribution of  the configurat ion q at time tf will be given 
by p(q, t f )= ]~(q, tr)l 2, in agreement  with the prediction of  the quan tum 

7 More generally, and more precisely, we say that a functional ~b ---} ~ '  from wave functions to 
finite measures on configuration space is equivariant if the diagram 

0t ~ g~' 

is commutative, where U, = exp[ - (gh) tH], with Hamiltonian H = -Y~s 1 (hZ/2mk) A~ (J 
+ V0, is the solution map for Schr6dinger's equation and Ff is the solution map for the 

natural evolution on measures which arises from (3.10), with initial wave function @. [F~(/l) 
is the measure to which ,u evolves in t units of time when the initial wave function is 0.] 
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formalism for the distribution of q at this time. In particular, Bohmian 
mechanics and the quantum formalism then agree on the statistics for the 
outcome of the measurement. 8 

4. THE PROBLEM OF Q U A N T U M  EQUIL IBRIUM 

Then for instantaneous macroscopic configurations the pilot-wave theory gives 
the same distribution as the orthodox theory, insofar as the latter is unam- 
biguous. However, this question arises: what is the good of either theory, giving 
distributions over a hypothetical ensemble (of worlds!) when we have only one 
world. (Bell (7)) 

Suppose a system has wave function ~. We shall call the probability 
distribution on configuration space given by p = l ~ l  2 the quantum 
equilibrium distribution. And we shall say that a system is in quantum 
equilibrium when its coordinates are "randomly distributed" according to 
the quantum equilibrium distribution. As we have seen, when a system and 
apparatus are in quantum equilibrium the results of "measurement" arising 
from the interaction between system and apparatus will conform with the 
predictions of the quantum formalism for such a measurement. 

More precisely(!), we say that a system is in quantum equilibrium 
when the quantum equilibrium distribution is appropriate for its descrip- 
tion. It is a major goal of this paper to explain what exactly this might 
mean and to show that, indeed, when understood properly, it is typically 
the case that systems are in quantum equilibrium. In other words, our goal 
here is to clarify and justify the quantum equilibrium hypothesis: 

When a system has wave function ~, the distribution p of its coordinates 
satisfies 

p = ItPl 2 (4.1) 

We shall do this in the later sections of this paper. In the rest of this section 
we will elaborate on the problem of quantum equilibrium. 

From a dynamical systems perspective, it would appear natural to 
attempt to justify (4.1) using such notions as "convergence to equilibrium," 
"mixing," or "ergodicity"--suitably generalized. And if it were in fact 

8 This argument  appears to leave open the possibility of disagreement when the outcome of 
the measurement  is not  configurationally grounded, i.e., when the apparatus variables which 
express this outcome are not  functions of qapp. However, the reader should recall Bohr's 
insistence that the outcome of a measurement  be describable in classical terms, as well as 
note that  results of measurements  must  always be at least potentially grounded configura- 
tionally, in the sense that  we can arrange that they be recorded in configurational terms 
without affecting the result. Otherwise we could hardly regard the process leading to the 
original result as a completed measurement.  
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necessary to establish such properties for Bohmian mechanics in order to 
justify the quantum equilibrium hypothesis, we could not reasonably 
expect to succeed, at least not with any degree of rigor. The problem of 
establishing good ergodic properties for nontrivial dynamical systems is 
extremely difficult, even for highly simplified, less than realistic, models. 

It might seem that Bohmian mechanics rather trivially fails to possess 
good ergodic properties, if one considers the motion arising from the 
standard energy eigenstates of familiar systems. However, quantum systems 
attain such simple wave functions only through complex interactions, for 
example, with an apparatus during a measurement or preparation proce- 
dure, during which time they are not governed by a simple wave function. 
Thus the question of the ergodic properties of Bohmian mechanics refers to 
the motion under generic, more complex, wave functions. 

We shall show, however, that establishing such properties is neither 
necessary nor sufficient for our purposes: That it is not necessary follows 
from the analysis in the later sections of this paper, and that it would not 
be sufficient follows from the discussion to which we now turn. 

The reader may wonder why the quantum equilibrium hypothesis 
should present any difficulty at all. Why can we not regard it as an addi- 
tional postulate, on say initial conditions (in analogy with equilibrium 
statistical mechanics, where the Gibbs distribution is often uncritically 
accepted as axiomatic)? Then, by equivariance, it will be preserved by the 
dynamics, so that we obtain the quantum equilibrium hypothesis for all 
times. In fact, when all is said and done, we shall find that this is an 
adequate description of the situation provided the quantum equilibrium 
hypothesis is interpreted in the appropriate way. But for the quantum equi- 
librium hypothesis as so far formulated, such an account would be grossly 
inadequate. 

Note first that the quantum equilibrium hypothesis relates objects 
belonging to rather different conceptual categories: The right-hand side of 
(4.1) refers to a dynamical object, which from the perspective of Bohmian 
mechanics is of a thoroughly objective character; while the left refers to a 
probability distribution--an object whose physical significance remains 
mildly obscure and moderately controversial, and which often is regarded 
as having a strongly subjective aspect. Thus, some explanation or justifica- 
t~ion is called for. 

One very serious difficulty with (4.1) is that it seems to be 
demonstrably false in a great many situations. For example, the wave 
fimction--of system and apparatus--after a measurement (arising from 
Schr6dinger's equation) is supported by the set of all configurations 
corresponding to the possible outcomes of the measurement, while the 
probability distribution at this time is supported only by those configura- 
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tions corresponding to the actual outcome, e.g., given by a specific pointer 
position, a main point of measurement being to obtain the information 
upon which this probability distribution is grounded. 

This difficulty is closely related to an ambiguity in the domain of 
physical applicability of Bohmian mechanics. In order to avoid incon- 
sistency, we must regard Bohmian mechanics as describing the entire 
universe, i.e., our system should consist of all particles in the universe: The 
behavior of parts of the universe, of subsystems of interest, must arise from 
the behavior of the whole, evolving according to Bohmian mechanics. 
It turns out, as we shall show, that subsystems are themselves, in fact, 
frequently governed by Bohmian mechanics. But if we postulate that 
subsystems must obey Bohmian mechanics, we "commit redundancy and 
risk inconsistency." 

Note also that the very nature of our concerns--the origin and 
justification of (local) randomness---forces us to consider the universal 
level: Local systems are not (always and are never entirely) isolated. Recall 
that cosmological considerations similarly arise in connection with the 
problem of the origin of irreversibility. (49) 

Thus, strictly speaking, for Bohmian mechanics only the universe has 
a wave function, since the complete state of an N-particle universe at any 
time is given by its wave function ~ and the configuration q = (ql ..... qN) of 
its particles. Therefore the right-hand side of the quantum equilibrium 
hypothesis (4.1) is also obscure as soon as it refers to a system smaller than 
the entire universe--and the systems to which (4.1) is normally applied are 
very small indeed, typically microscopic. 

Suppose, as suggested earlier, we consider (4.1) for the entire universe. 
Then the right-hand side is clear, but the left is completely obscure: Focus 
on (4.1) for THE INITIAL TIME. What physical significance can be 
assigned to a probability distribution on the initial configurations for the 
entire universe? What can be the relevance to physics of such an ensemble 
of universes? After all, we have at our disposal only the particular, actual 
universe of which we are a part. Thus, even if we could make sense of the 
right-hand side of (4.1), and in such a way that (4.1) remains a conse- 
quence of the quantum equilibrium hypothesis at THE INITIAL TIME, 
we would still be far from our goal, appearances to the contrary notwith- 
standing. 

Since the inadequacy of the quantum equilibrium hypothesis regarded 
as describing an ensemble of universes is a crucial point, we wish to 
elaborate. For each choice of initial universal wave function ~k and con- 
figuration q, a "history"--past, present, and future--is completely deter- 
mined. In particular, the results of all experiments, including quantum 
measurements, are determined. 
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Consider an ensemble of universes initially satisfying (4.1), and sup- 
pose that it can be shown that for this ensemble the outcome of a par- 
ticular experiment is randomly distributed with distribution given by the 
quantum formalism. This would tell us only that if we were to repeat the 
very same experiment-whatever this might mean--many times, sampling 
from our ensemble of universes, we would obtain the desired distribution. 
But this is both impossible and devoid of physical significance: While we 
can perform many similar experiments, differing, however, at the very least, 
by location or time, we cannot perform the very same experiment more 
than once. 

What we need to know about, if we are to make contact with physics, 
are empirical distributions--actual relative frequencies within an ensemble 
of actual events--arising from repetitions of similar experiments, performed 
at different places or times, within a single sample of the universe--the one 
we are in. In other words, what is physically relevant is not sampling across 
an ensemble of universes--across (initial) q's--but sampling across space 
and time within a single universe, corresponding to a fixed (initial) q 
(and 0). 

Thus, to demonstrate the compatibility of Bohmian mechanics with 
the predictions of the quantum formalism, we must show that for at least 
some choice of initial universal 0 and q, the evolution (3.12) leads to an 
apparently random pattern of events, with empirical distribution given by 
the quantum formalism. In fact, we show much more. 

We prove that for every initial ~, this agreement with the predictions 
of the quantum formalism is obtained for typical--i.e., for the over- 
whelming majority of--choices of initial q. And the sense of typicality here 
is with respect to the only mathematically natural--because equivariant-- 
candidate at hand, namely, quantum equilibrium. 

Thus, on the universal level, the physical significance of quantum 
equilibrium is as a measure of typicality, and the ultimate justification of 
the quantum equilibrium hypothesis is, as we shall show, in terms of the 
statistical behavior arising from a typical initial configuration. 

According to the usual understanding of the quantum formalism, 
when a system has wave function ~k, (4.1) is satisfied regardless of whatever 
additional information we might have. When we claim to have established 
agreement between Bohmian mechanics and the predictions of the 
quantum formalism, we mean to include this statement among those 
predictions. We are thus claiming to have established that in a universe 
governed by Bohmian mechanics it is in principle impossible to know more 
about the configuration of any subsystem than what is expressed by (4 .1 ) -  
despite the fact that for Bohmian mechanics the actual configuration is an 
objective property, beyond the wave function. 

822/67/5-6-2 



860 Dfirr et  al.  

This may appear to be an astonishing claim, particularly since it refers 
to knowledge, a concept both vague and problematical, in an essential way. 
More astonishing still is this: This uncertainty, of an absolute and precise 
character, emerges with complete ease, the structure of Bohmian mechanics 
being such that it allows for the formulation and clean demonstration of 
statistical statements of a purely objective character which nonetheless 
imply our claims concerning the irreducible limitations on possible 
knowledge whatever this "knowledge" may precisely mean, and however we 
might at tempt  to obtain this knowledge, provided it is consistent with 
Bohmian mechanics. We shall therefore call this limitation on what can be 
known absolute uncertainty. 

5. T H E  E F F E C T I V E  W A V E  F U N C T I O N  

No one can understand this theory until he is willing to think o f  ~k as' a real objec- 
tive field rather than just a "probability amplitude." Even though it propagates not 
in 3-space but in 3N-space. (Bell ~7)) 

We now commence our more detailed analysis of the behavior of 
an N-particle nonrelativistic universe governed by Bohmian mechanics, 
focusing in this section on the notion of the effective wave function of a 
subsystem. We begin with some notation. 

We shall use T as the variable for the universal wave function, 
reserving ~ for the effective wave function of a subsystem, the definition 
and clarification of which is the aim of this section. By T~ we shall denote 
the universal wave function at time t. We shall use q =  (ql ..... qN) as the 
generic configuration space variable, which, to avoid confusion, we shall 
usually distinguish from the actual configuration of the particles, for which 
we shall usually use capitals. Thus, we shall write 7 t =  gt(q) and shall 
denote the configuration of the universe at time t by Q,. 

We remind the reader that according to Bohmian mechanics the state 
( Q ,  7~t) of the universe at time t evolves via 

dQ~=ve , (Q t )  
dt 

dgtt ~ h2 
ih d~ - ~-m-~mkAkTt+ V~Pt 

k = l  

(5.1) 

defined by (3.9). where v ~ '=(vl  ~ ..... v~) with v k 
For  any given subsystem of particles we obtain a splitting 

q = (x, y) (5.2) 
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with x the generic variable for the configurat ion of the subsystem and y the 
generic variable for the configurat ion of the complemen ta ry  subsystem, 
to rmed  by the particles not  in the given subsystem. We shall call the given 
subsystem the x-system, and we shall somet imes call its c o m p l e m e n t - - t h e  
y-system--the environment of the x-system. 9 

Of  course, for any splitting (5.2) we have a splitting 

Q = (x ,  Y) (5.3) 

for the actual  configuration.  And for the wave function T we m a y  write 
~u= ~(x ,  y). 

Frequent ly  the subsystem of interest natural ly  decomposes  into 
smaller subsystems. Fo r  example,  we m a y  have 

x = (xsys, Xapp) (5.4) 

for the composi te  formed by system and appara tus ,  or 

x = (Xl,..., xM) (5.5) 

for the composi te  formed from M disjoint subsystems. And, of course, any 
of the xi in (5.5) could be of the form (5.4). 

Consider  now a subsystem with associated splitting (5.2). We wish to 
explore the circumstances under  which we m a y  reasonably  regard this sub- 
system as "itself having a wave function." This will serve as mot iva t ion  for 
our  definition of the effective wave function of this subsystem. To  this end, 
suppose first that  the universal  wave function factorizes so that  

T(x, y) = ~(x)  ~ ( y )  (5.6) 

]?hen we obtain  the splitting 

v~ '=  (v ~, v ~) (5.7) 

and, in part icular,  we have that  

dX= v~ ( X) (5.8) 
dt 

9 While we have in mind the situation in which the x-system consists of a set of particles 
selected by their labels, what we say would not be (much) affected if the x-system consisted, 
say, of all particles in a given region. In fact, the splitting (5.2) could be more general than 
one based upon what we would normally regard as a division into complementary systems 
of particles; for example, the x-system might include the center of mass of some collection 
of particles, while the y-system includes the relative coordinates for this collection. 
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for as long as (5.6) is satisfied. Moreover, to the extent that the interaction 
between the x-system and its environment can be ignored, i.e., that the 
Hamiltonian 

h 2 
H = -  ~ ~ A ~ + V  (5.9) 

k = l  

in (5.1) can be regarded as being of the form 

H =  H{X} + H {y) (5.10) 

where H {x} and H (y} are the contributions to H arising from terms 
involving only the particle coordinates of the x-system and the y-system, 
respectively, 1~ the form (5.6) is preserved by the evolution, with ~b, in 
particular, evolving via 

ih ~-d~ = H(X)~b (5.11) 

It must be emphasized, however, that the factorization (5.6) is 
extremely unphysical. After all, interactions between system and environ- 
ment, which tend to destroy the factorization (5.6), are commonplace. In 
particular, they occur whenever a measurement is performed on the 
x-system. Thus, the universal wave function 7/ should now be of an 
extremely complex form, involving intricate "quantum correlations" 
between x-system and y-system, however simple it may have been 
originally t 

Note, however, that if 

~ =  ~{1)+ ~(2} (5.12) 

with the wave functions on the right having (approximately 11) disjoint 
supports, then (approximately) 

v~'(Q) = v ~'"'(Q) (5.13) 

to The sense of approximation expressed by (5.10) is somewhat delicate. In particular, (5.10) 
should not  be regarded as a condition on H (or V) so much as a condition on (the supports 
of) the factors q /and  {b of the wave function 7/whose  evolution is governed by H; namely, 
that these supports  be sufficiently well separated so that all contributions to V involving 
both particle coordinates in the support  of ~ and particle coordinates in the support  of q} 
are so small that they can be neglected when H is applied to such a ~g. 

11 In an appropriate sense, of course. Note in this regard that the simplest metrics d on the 
projective space of rays {c~} are of the form d(7 ~, ~P')= [IV~V/~/'-V~'/~'II, where II" II is 
a norm on the space of complex vector fields on configuration space. Moreover, the metric 
d is preserved by the space-time symmetries (when II-]1 is translation and rotation 
invariant). 
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tbr Q in the support of ~(n. Of course, by mere linearity, if ~u is of the form 
(5.112) at some time r, it will be of the same form 

~u t = ~}1)+ ~}2~ (5.t4) 

for all t, where ~}i) is the solution agreeing with gtu~ at time ~ of the 
second equation of (5.1). Moreover, if the supports of g,(x) and ~u(2~ are 
"sufficiently disjoint" at this time, we should expect the approximate 
disjointness of these supports, and hence the approximate validity of (5.13), 
to persist for a "substantial" amount of time. 

Finally, we note that according to orthodox quantum measurement 
theory,(S6'12'60'62) after a measurement, or preparation, has been performed 
on a quantum system, the wave function for the composite formed by 
system and apparatus is of the form 

(5.15) 
: (  

with the different ~b~ supported by the macroscopically distinct (sets of) 
configurations corresponding to the various possible outcomes of the 
measurement, e.g., given by apparatus pointer positions. Of course, for 
Bohmian mechanics the terms of (5.15) are not all on the same footing: one 
of them, and only one, is selected, or more precisely supported, by the 
outcome--corresponding, say, to ~0--which actually occurs. To emphasize 
this, we may write (5.15) in the form 

t ) | 1 6 2  ~•  (5.16) 

where ~p = ~0,  ~b = ~b~0, and ~ u• = Z~ ~ n0 0~ | ~b~. 
Motivated by these observations, we say that a subsystem, with 

associated splitting (5.2), has effective wave function ~ (at a given time) if 
the universal wave function ~u= 7S(x, y) and the actual configuration 
Q = (X, Y) (at that time) satisfy 

7qx, y) = O(x) ~ (y )  + ~• y) (5.17) 

with ~ and V• having macroscopically disjoint y-supports, and 

Y~ supp # (5.18) 

Here, by the macroscopic disjointness of the y-supports of ~ and 7 t• we 
mean not only that their supports are disjoint, but that there is a macro- 
scopic function of y-- think,  say, of the orientation of a pointer--whose 
values for y in the support of r differ by a macroscopic amount from its 
values for y in the support of ~• 
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Readers familiar with quantum measurement theory should convince 
themselves [see (5.15) and (5.16)] that our definition of effective wave 
function coincides with the usual practice of the quantum formalism in 
ascribing wave functions to systems whenever the latter does assign a wave 
function. In particular, whenever a system has a wave function for orthodox 
quantum theory, it has an effective wave function for Bohmian 
mechanics. 12 However, there may well be situations in which a system has 
an effective wave function according to Bohmian mechanics, but the 
standard quantum formalism has nothing to say. (We say "may well be" 
because the usual quantum formalism is too imprecise and too controver- 
sial insofar as these questions--for which "collapse of the wave packet" 
must in some ill-defined manner be invoked--are concerned to allow for a 
more definite statement.) Readers who are not familiar with quantum 
measurement theory can as a consequence of our later analysis--simply 
replace whatever vague notion they may have of the wave function of a 
system with the more precise notion of effective wave function. 

Despite the slight vagueness in the definition of effective wave func- 
tion, arising from its reference to the imprecise notion of the macroscopic, 
the effective wave function, when it exists, is unambiguous. In fact, it is 
given by the conditional wave function (we identify wave functions related 
by a nonzero constant factor) 

O(x) = ~U(x, Y) (5.19) 

which, moreover, is (almost) always defined (assuming continuity, which, 
of course, we must). In fact, the main result of this paper, concerning the 
statistical properties of subsystems, remains valid when the notion of effec- 
tive wave function is replaced by the completely precise, and less restrictive, 
formulation provided by the conditional wave function (5.19).13 

Note that by virtue of the first equation of (5.1), the velocity vector 
field for the x-system is generated by its conditional wave function. 
However, the conditional wave function will not in general evolve (even 

12 Note that the x-system will not have an effective wave funct ion--even approximate ly--  
when, for example, it belongs to a larger microscopic system whose effective wave function 
does not factorize in the appropriate way. Note also that the larger the environment of the 
x-system, the greater is the potential for the existence of an effective wave function for this 
system, owing in effect to the greater abundance of "measurement-like" interactions with a 
larger environment (see, for example, point 20 of the Appendix and the references therein). 

13 We therefore need not  be too concerned here by the fact that our definition is also some- 
what unrealistic, in the sense that in situations where we would in practice say that a system 
has wave function ~O, the terms on the right-hand side of (5.17) are only approximately dis- 
joint, or, what amounts  to the same thing, the first term on the right is only approximately 
of the product from, though to an enormously good degree of approximation. 
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a p p r o x i m a t e l y )  accord ing  to Schr6dinger ' s  equat ion ,  even when the 

x-sys tem is dynamica l ly  decoup led  f rom its environment .  Thus,  (5.19) by 
itself lacks the central  d y n a m i c a l  impl icat ions ,  as suggested by the 
p re l iminary  discussion,  of  our  defini t ion (5.17), (5.18). And  it is of course 
from these dynamica l  impl ica t ions  that  the wave funct ion of  a system 
derives much  of  its physical  significance. ~4 

No te  well that  the no t ion  of  effective wave function,  or  cond i t iona l  
wave function,  is made  possible  by the existence of the a c t u a l  conf igura t ion  
Q = (X, Y) as well as gt! (In par t icu lar ,  the e f fec t ive- -or  c o n d i t i o n a l - - w a v e  
f imction is objec t i ve ,  while a re la ted no t ion  in Everet t ' s  many-wor ld s  or  
relat ive state in te rp re ta t ion  of q u a n t u m  theory  (26) is merely relat ive .  F o r  an 
incisive cri t ique of  the many-wor lds  in te rpre ta t ion ,  as well as a deta i led 
compa r i son  with Bohmian  mechanics ,  see Bell. (4'v)) No te  also tha t  the 
cond i t iona l  wave funct ion is the funct ion of x mos t  na tura l ly  ar is ing from 
~P and  Y. 15 

W e  emphas ize  that  the effective wave funct ion as well as the condi-  
t ional  wave func t ion- - i s ,  like any hones t  to goodness  a t t r ibu te  or  object ive 
p roper ty ,  a funct ional  of state descr ipt ion,  here a funct ion-valued  func- 
t ional  of  7 t and  Q = (X, Y) which depends  on  Q only th rough  Y. We shall 
somet imes  write  

= ~ Y' ~' (5.20) 

to emphas ize  this re la t ionship.  F o r  the cond i t iona l  or  effective wave 
funct ion at  t ime t we shall  somet imes  write  

~,t = ~ Y~'~"- ~ ' (5.21) 

suppress ing the dependence  upon  ~. 
No te  tha t  though  we speak of  0 as a p rope r ty  of the x-system, it 

depends  not  upon  the coord ina tes  of the x-system, but  only  upon  the 
envi ronment ,  a dis t inct ly  pecul ia r  s i tua t ion  f rom a classical perspective.  In  

~4 In this regard note the following: Let W ' ( x )  = V~(x, g), where V 1 is the contribution to V 
arising from the terms which represent interactions between the x-system and the y-system, 
i.e., H =  H ~x) + H ly) + Vz. Suppose that W r does not depend upon Y for Y in the support 
of 45, W Y = W for YE supp 45. Then the effective wave function ~, satisfies ih dO/dt = 
(H (x~ + W)0, The reader should think, for example, of a gas confined by the walls of a box, 
or of a particle moving among obstacles. The interaction of the gas or the particle with 
the walls or the obstacles--which after all are part of the environment--is expressed 
through W. 

15For particles with spin our definition (5.17), (5.18) needs no essential modification. 
However, (5.19) would have to be replaced by gqx, Y)= ~9(x)| 45, where | here denotes 
the tensor product over the spin degrees of freedom. In particular, for particles with spin, 
a subsystem need not have even a conditional wave function. 
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fact, i t  is precisely because  of this tha t  the effective wave  func t ion  behaves  
l ike a degree of f r eedom for the  x -sys tem which  is i n d e p e n d e n t  of its 
c o n f i g u r a t i o n  X. 

C o n s i d e r  n o w  a c o m p o s i t e  x = (xl , . . . ,  XM) of microscopic  subsys tems,  

wi th  M n o t  too  large, i.e., n o t  "mac roscop ica l l y  large." Suppose  tha t  
( s i m u l t a n e o u s l y )  each  x i - sys t em has  effective wave  f u n c t i o n  ~ .  T h e n  the 
x - sys tem has  effective wave  func t i on  

@(X) = ~/I(X1) @2(X2)""" @M(XM) (5.22) 

in  a g r e e m e n t  wi th  the  q u a n t u m  formal i sm.  16 To  see this, no t e  tha t  for each 

i we have  tha t  

7"= O,(x,) 45i(s,) + v'?(x,, y,) (5.23) 

wi th  45i a n d  ~P~ h a v i n g  mac roscop ica l l y  d i s jo in t  y i - s u p p o r t s  and ,  hence,  
because  the  x~-systems are  microscopic ,  h a v i n g  d i s jo in t  y - s u p p o r t s  as 
well. 17 Moreove r ,  

Y~ supp  451 c~ supp  452 n . . .  n supp  45M (5.24) 

a n d  for all  such Y we have  

~'(x, ..... xM, r )  = ~,i(xi) 45/(2~, Y) (5.25) 

for all  i, where  2i = (xl, . . . ,  XM) wi th  x~ miss ing.  I t  fol lows by  s e p a r a t i o n  of 
var iab les ,  wr i t ing  

7'(x, Y)= Ol(x , ) . . .  0M(XM)45(X, r )  (5.26) 

t6 AS far as the quantum formalism is concerned, recall that from a purely operational 
perspective, whatever procedure simultaneously prepares each system in the corresponding 
quantum state is a preparation of the product state for the composite. Moreover, an 
analysis of such a simultaneous preparation in terms of quantum measurement theory 
would, of course, lead to the same conclusion. Note also that if the x-system is described 
by a density matrix whose reduced density matrix for each xi-system is given by the wave 
function Oi, then this density matrix is itself, in fact, given by the corresponding product 
wave function. 

17 It is at this point that the condition that M not be "too large"--so large that x can be used 
to form a macroscopic variable--becomes relevant. And while the problematical situation 
which worries us here may seem far-fetched, it is not as far-fetched as it initially might 
appear to be. It may be that SQUIDs, superconducting quantum interference devices, can 
be regarded as giving rise to a situation just like the one with which we are concerned, in 
which lots of microscopic systems have, say, the same effective wave function, but the com- 
posite does not have the corresponding product as effective wave function. See, however, 
the comment following the proof of (5.22). 
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and dividing by l ie  0i, that for Y satisfying (5.24) 

~(x, Y) = O~(x~)... O . ( x . )  ~(Y) (5.27) 

and, indeed, that the x-system has an effective wave function, given by the 
product (5.22). 

Note that this result would not in general be valid for conditional 
wave functions. In fact, the derivation of (5.22), which is used for the 
equal-time analysis of Section 7, is the only place where more than (5.19) 
is required for our results, and even here only the more precise conse- 
quence (5.25) is needed. Moreover, our more general, multitime analysis 
(see Sections 8-10) does not appeal to (5.22) and requires only (5.19). 

We wish to point out that while the qualifications under which we 
have established (5.22) are so mild that in practice they exclude almost 
nothing, (5.22) is nonetheless valid in much greater generality. In fact, 
whenever it is "known" that the subsystems have the 0i as their respective 
effective wave functions--by investigators, by devices, or by any records or 
traces whatsoever--insofar as this "knowledge" is grounded in the environ- 
ment of the composite system, i.e., is reflected in y, (5.22) follows without 
further qualification. 

Nonetheless, in order better to appreciate the significance of the 
qualification "microscopic" for (5.22), the reader should consider the 
following unrealistic but instructive example: Consider a pair of macro- 
scopic systems with the composite system having effective wave function 
O(x)=OI.(Xl)OL(X2)+OR(xl)OR(x2), where 0L is a wave function 
supported by configurations in which a macroscopic coordinate is "on the 
left," and similarly for OR. Suppose that X1 and X2 are "on the left." Then 
each system has effective wave function 0I~. 

What wave function would the quantum formalism assign to, say, 
system 1 in the previous example? Though we can imagine many responses, 
we believe that the best answer is, perhaps, that while the quantum 
formalism is for all practical purposes unambiguous, we are concerned here 
with one of those "impractical purposes" for which the usual quantum 
formalism is not sufficiently precise to allow us to make any definite state- 
ment on its behalf. In this regard, see Bell. (H~ 

We shall henceforth often say "wave function" instead of "effective 
wave function." 

6. T H E  F U N D A M E N T A L  C O N D I T I O N A L  P R O B A B I L I T Y  
F O R M U L A  

The intellectual attractiveness of a mathematical argument, as well as the 
considerable mental labor involved in following it, makes mathematics a power- 
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ful tool of intellectual prestidigitation--a glittering deception in which some are 
entrapped, and some, alas, entrappers. Thus, for instance, the delicious 
ingenuity of the Birkhoff ergodic theorem has created the general impression 
that it must play a central role in the foundations of statistical mechanics.... The 
Birkhoff theorem does us the service of establishing its own inability to be more 
than a questionably relevant superstructure upon [the] hypothesis [of absolute 
continuity]. (Schwartz (53)) 

We are ready to begin the detailed analysis of the quan tum 
equilibrium hypothesis (4.1). We shall find that  by employing, purely 
as a mathematical  device, the quan tum equilibrium distribution on the 
universal scale, at, say, T H E  I N I T I A L  T I M E ,  we obtain the quan tum 
equilibrium hypothesis in the sense of empirical distributions for all scales 
at all times. The key ingredient in the analysis is an elementary condit ional  
probabil i ty formula. 

Let us now denote the initial universal wave function by ~0 and the 
initial universal configurat ion by Q, and for definiteness let us take T H E  
I N I T I A L  T I M E  to be t = 0 .  For  the purposes of our  analysis we shall 
regard ~o as fixed and Q as random. More  precisely, for given fixed ~0 we 
equip the space ~ = {Q} of  initial configurations with the quan tum equi- 
librium probabil i ty distribution P(dQ)=P~'~ [~Uo(Q)[2 dQ. Then Qt 
is a r andom variable on the probabil i ty space { ~, P }, since it is determined 
via (5.1) by the initial condit ion given by Qo = Q and ~g0- Thus, for any 
subsystem, with associated splitting (5.2), X,, Y,, and 0t  are also r andom 
variables on {~, P},  where Qt = (x t ,  Yt) is the splitting of Qt arising from 
(5.2), and 0 ,  is the (condit ional)  wave function of the x-system at time t 
[see Eq. (5.21)]. 18 

We wish again to emphasize that, taking into account  the discussion 
in Section 4, we regard the quan tum equilibrium distribution P, at least for 
the time being, solely as a mathematical  device, facilitating the extraction 
of empirical statistical regularities from Bohmian  mechanics (in a manner  
roughly analogous to the use of ergodicity in deriving the pointwise 
behavior  of time averages for dynamical  systems), and otherwise devoid of 
physical significance. (However,  as a consequence of our  analysis, the reader 
who so wishes can safely also regard P as providing a measure of subjective 
probabil i ty for the initial configurat ion Q. After all, P could in fact be 
somebody's subjective probabil i ty for Q.) 

18 The reader may wonder why we do not also treat tu o as random. First of all, we do not 
have to--we are able to establish our results for every initial ~g0, without having to invoke 
in any way any randomness in ~u 0. Moreover, if it had proven necessary to invoke random- 
ness in ~g0, the results so obtained would be of dubious physical significance, since to 
account for the nonequilibrium character of our world, the initial wave function must be a 
nonequilibrium, i.e., "atypical," wave function. See the discussion in Sections 12-14. 
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Note that by equivariance the distribution of the random variable Q, 
is given by [~pt]2. It thus follows directly from (5.17), and even more 
directly from (5.19), that for the conditional probability distribution of the 
configuration of a subsystem, given the configuration of its environment, 
we have the fundamental conditional probability formula 19 

P(X, mdx I Y,)= lO,(x)I2dx (6.l) 

where ~ t = ~  rL is the (conditional) wave function of the subsystem at 
time t. In particular, this conditional distribution on the configuration of a 
subsystem depends on the configuration of its environment only through its 
wave function--an object of quite independent dynamical significance. In 
other words, X, and Yt are conditionally independent given ~t. The entire 
empirical statistical content of Bohmian mechanics flows from (6.1) with 
remarkable ease. 

We wish to emphasize that (6.1) involves conditioning on the detailed 
microscopic configuration of the environment--far more information than 
could ever be remotely accessible. Thus, (6.1) is extremely strong. Note that 
it implies in particular that 

P(X,~dxl Or) = tO,(x)lZdx (6.2) 

which involves conditioning on what we would be minimally expected to 
know if we were testing Born's statistical law (4.1). However, it would be 
very peculiar to know only this--to know no more than the wave function 
of the system of interest. But (6.1) suggests--and we shall show (see 
Section 11)--that whatever additional information we might have can be of 
no relevance whatsoever to the possible value o f  X , .  2~ 

. EMPIR ICAL D ISTRIBUT IONS 

...a single configuration of the world will show statistical distributions over its 
different parts. Suppose, for example, this world contains an actual ensemble of 
similar experimental set-ups ... it follows from the theory that the "typical" world 
will approximately realize quantum mechanical distributions over such 
approximately independent components. The role of the hypothetical ensemble 
is precisely to permit definition of the word "typical." (Bell 17~) 

19~ is to be understood as normalized whenever we write I~12 
20 It immediately follows from (6.1) that for random g~0 we have that 

P(X, e dx l Y,, ~0) = IOr dx 

where now P(dQ, d~Fo)= I tI%(Q)12dQ t~(d~o) with # any probability measure whatsoever 
on initial wave functions. Moreover, (6.2) remains valid. 
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In this section we present the simplest application of (6.1), to the 
empirical distribution on configurations arising from a large collection of 
subsystems, all of which have the "same" wave function at a common time. 
This is the situation relevant to an equal-time test of Born's statistical law. 
In practice the subsystems in our collection would be widely separated, 
perhaps even in different laboratories. 

Consider M subsystems, with configurations Xl ..... XM, where x~ are 
coordinates relative to a frame of reference convenient for the ith sub- 
system. Suppose that with respect to these coordinates each subsystem has 
at time t the same wave function ~, with the composite x =  (x~,..., XM) 
having the corresponding product 

Or(X) ~-- 0 ( X l ) "  "" ~g(XM) (7.1) 

as its wave function at that time. Then applying the fundamental condi- 
tional probability formula to the x-system, we obtain 

P(X, �9  Yt= Y):IO(Xa)I2...[@(XM)I2 dXl...dXM ~ (7.2) 

where Y, = Y is the configuration of the environment at this time. In other 
words, we find that relative to the conditional probability distribution 
P ~ ( d Q ) -  P(dQ I Y, = Y) given the configuration of the environment of the 
composite system at time t, the (actual) coordinates X~ ..... XM of the sub- 
systems at this time form a collection of independent random variables, 
identically distributed, with common distribution Pqe = I~tl2" 

In any test of the quantum equilibrium hypothesis (4.1), it is the 
empirical distribution 

1 ~ O(z- Xi) 
/3emp(Z) : m/=I (7.3) 

of ( X  1 ..... XM) which is directly observed--so that the operational 
significance of the quantum equilibrium hypothesis is that Pemp be 
(approximately) given by Pqe" Notice that Pemp is a (distribution-valued) 
random variable on (2, P), and that Pemp(/ ' ) --= SrPemp(Z)dz is the relative 
frequency in our ensemble of subsystems of the event "Xi e F." 

It now follows from the weak law of large numbers that when the 
number M of subsystems is large, Pemp is very close to Pqe for (P~-)most 
initial configurations Q �9 ~ - -  {Q e =9 [ Y, = Y}, the fiber of 9 for which 
Y,= Y: For  any bounded function f(z), and any e>O, let the 
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"agreement set" A(M, f ,  e, t) ~ ~ be the set of initial configurations Q 6 .~v 
for which 

IlPemp--Pqel]f ~ f EPemp(Z)--Pqe(Z)] f (z)  dz 

1 (. 
= ~ ~.= f ( X , ) -  ~tf(z) It//(z)l 2 dz 

~<e (7.4) 

(We suppress the dependence of A on Y and on the subsystems under 
consideration.) Then by the weak law of large numbers 

P,~(A(M, f ,  8, t ) )=  1 - 6 ( M , f ,  e) (7.5) 

where 6 ~ 0 as M ~ oe. 
For a single function f ,  II" IIs cannot provide a very good measure 

of closeness. Therefore, consider any finite collection f =  (f~) of bounded 
functions, corresponding, for example, to a coarse graining of value space, 
and let 

A(M, f, e, t) = ~ A(M, f~, e, t) 

=_ { Q ~ , r  [ llp~mp-pqollf=_su p IIp~mp-pq~llf~ ~E} (7.6) 
2~ 

It follows from (7.5) that 

P / (A(M,  f, e, t)) = 1 - 3(M, f, e) (7.7) 

where 6( M, f, ~ ) ~ Y~ 6( M, f ~, ~ ). 
The empirical distribution ,Oem p does not probe in a significant way the 

joint distribution (7.2), i.e., the independence, of X1,..., XM--the law of 
large numbers is valid under conditions far more general than inde- 
pendence. To explore independence one might employ pair functions 
f (Xi,  Xj), or functions of several variables, in a manner analogous to that 
of the preceding analysis. Rather than proceeding in this way, we merely 
note--more generally--the following: 

For any decision regarding the joint distribution of the X i, we have at 
our disposal only the values which happen to occur. On the basis of some 
feature of these values, we must arrive at a (possibly rather tentative) 
conclusion. With any such feature we may associate a subset Y of the 
space •DM= {(Xl ..... XM) } of possible joint values, where D = dim(Xi) is 
the dimension of our subsystems. 
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Let Z- c RoM be a stat is t ical  test for the hypothesis that X 1 , . . . ,  X M are 
independent, with distribution 10] 2. This means that the failure to occur of 
the event (XI ..... XM) e ~ -  can be regarded as a strong indication that 
J(~,..., XM are not generated by such a joint distribution; in other words, it 
means that 

IF(Z-) = 1 - 6 (Y)  (7.8) 

with 6 <~ 1, where iF(dx~ ..... dXM) = IO(xl)l 2 . . -  I~(x~)l  2 dXl'" dXM is the 
joint distribution under examination, l - f  (J-)  is a measure of the 
reliability of the test 9-. 

Let 

A(~-, t )=  { Q ~  I X,--= (Xl,..., XM)~ 3-} (7.9) 

Then, trivially, 

PY(A(3--, t))--  1 -c~(Y)  (7.10) 

i.e., the P,Y-size of the set of initial configurations in Q~ for which the test 
is passed matches precisely the reliability of the test. [-We remind the reader 
that the exis tence of useful tests, analogous to, but more general than, the 
one defined, for example, by (7.4), is a consequence of the weak law of 
large numbers.] In particular, the size of M required for 6 in (7.7) to be 
"sufficiently" small is precisely the size required for the corresponding test 

J =  (xl , . . . ,xM)e~ ~ L ( x i ) -  f f~(z) I9(z)l: dz <~e 
. =  

(7.11) 

to be "sufficiently" reliable (see point 12 of the Appendix). 
Equations (7.5), (7.7), and (7.10) are valid only for Yas described, i.e., 

when the x-system has (conditional) wave function 0 , - ~ Y '  ~' of the form 
(7.1), with which we are primarily concerned. We remark, however, that 
for a general Y these equations remain valid, provided the agreement sets 
which appear in them are sensibly defined in terms of the conditional 
distribution P~ (dx )=  [qgY'~'(x)12 dx of Xt given Yt= Y. For example, we 
may let 

A(Y, t )=  {Q ~-~,Y I x , ~  Z-(P~)} (7.12) 

where, for any distribution P (on R~ J -=Y-( iF )  is a test for iF, 
satisfying (7.8) with 6 ( J - ) <  1. 
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In terms of such conditioned agreement sets A( Y, t), we may define an 
unconditioned agreement set A(t) by requiring that 

A(t) c ~ . ~ =  A(Y, t) (7.13) 

Directly in terms of the tests .7, 

A( t )=  { Q ~  I X, e j ( P r ' ) }  (7.14) 

Corresponding to Eqs. (7.5), (7.7), and (7.10) we then have that 

P(A(t)) = 1 - cS(t) (7.15) 

where 

b(t) = f 6(Y,, t) d P ~  1 (7.16) 

with 6(Y, t ) -  6 (~ (P~) ) .  
Having said this, we wish to emphasize that Eqs. (7.5), (7.7), and 

(7.10) (for a general Y), expressing the "largeness" of the conditioned 
agreement sets, are much stronger and much more relevant than the equa- 
tions (7.15), (7.16) which we have just obtained: The original equations 
demand that the disagreement set B ( t ) = A ( t ) c - ~ \ A ( t )  be "small," not 
just for "'most" fibers ~v  corresponding to the possible environments Y at 
time t, but for all such fibers. Insofar as the actual environment Y, at 
time t might be rather special--for example, because it describes a world 
containing (human) life--the fact that "disagreement" has "insignificant 
probability" for every environment, regardless of how special, is quite 
important. 21 Indeed, it is the crucial element in our analysis of absolute 
uncertainty in Section 11. 

We may summarize the conclusion at which we have so far arrived 
with the assertion that for Bohmian mechanics typical initial configurations 
lead to empirical statistics at time t which are governed by the quantum 
formalism (see the last paragraph of Section 3). Typicality is to be here 
understood in the sense of quantum equilibrium: something is true for 
typical initial configurations if the set of initial configurations for 
which it is false is small in the sense provided by the quantum equilibrium 
ditstribution P (and the appropriate conditional quantum equilibrium 
distributions P~ arising from P). 

21 Note, in particular, that for any condition cg on environments implying, among other 
things, that the wave function of the x-system at time t is of the form (7.1), we have the 
same statement of the "smallness" of the disagreement set with respect to the conditional 
distribution given Y, e ~. 
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We wish to emphasize the role of equivariance in our analysis. Notice 
that Eqs. (7.6), (7.7) would remain valid--with 6 small--if, for example, Pqe 
were replaced by I~] 4, provided the sense P of typicality were given, not by 
1~[4 (which is not equivariant), but by the density to which 1~,14 would 
(backward) evolve as the time decreases from t to THE INITIAL TIME 
0. This distribution, this sense of typicality, would presumably be 
extravagantly complicated and exceedingly artificial. 

More important, it would depend upon the time t under considera- 
tion, while equivariance provides a notion of typicality that works for all 
t. In fact, because of this time independence of typicality for quantum equi- 
librium, we immediately obtain the typicality of joint agreement for a 
not-too-large collection of times t~,..., t j ,  

as well as the typicality of joint agreement at most times of a collection of 
any size. We shall not go into this in more detail here because equivariance 
in fact yields results far more powerful than these, covering the empirical 
distribution for configurations X~ ..... XM referring to times tl ..... tM which 
may all be different, to which we now turn. We shall find that in exploring 
this general situation, further novelties of the quantum domain emerge. 

8. M U L T I T I M E  E X P E R I M E N T S :  T H E  P R O B L E M  a2 

In the previous section we analyzed the joint distribution of the 
simultaneous configurations X1 ..... XM of M (distinct and disjoint) sub- 
systems, each of which has the same wave function ft. We would now like 
to consider the more general, and more realistic, situation in which 
X1,..., XM refer to any M subsystems, some or all of which might in fact be 
the same, at respective times t~ ..... tM, which might all be different. And we 
would again like to conclude that suitably conditioned, X1 ..... XM are inde- 
pendent, each with distribution given by 1~t2; this would imply, precisely 
as in Section 7, the corresponding results about empirical distributions and 
tests. 

We shall find, however, that this multitime situation requires con- 
siderably more care than we have so far needed; in particular, what we 
might think at first glance we would like to be true, in fact turns out to be 
in general false! 

To begin to appreciate the difficulty, consider configurations X~ and 

22 Sections 8-10 should perhaps be skipped at first reading. 
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X 2 referring to the same system but at different times t1 < t2, and suppose 
this system has wave function 0 at both of these times. Can we conclude 
t]~at X1 and )(2 are independent? Of course not! For  example, if the system 
is suitably isolated between the times tl and t2, so that its configuration 
undergoes an autonomous evolution, then )(2 will in fact be a function of 
X1; in the simplest case, when the wave function 0 is a ground state, we 
will in fact have that X2 = X1. 

What has just been described is not, however, an instance of disagree- 
ment with the quantum formalism, which concerns only the results of 
observation--and in the previous example observation would destroy the 
isolation upon which the strong correlation between X1 and )(2 was based. 
Moreover, the particular difficulty just described is easily remedied by 
taking "observation" into account. However, it is perhaps worth noting 
that for the equal-time analysis it was not necessary in any way to take 
observation directly into account to obtain agreement with the quantum 
formalism--X1 ..... XM had the distribution given by the quantum 
formalism regardless of whether these variables were observed. 

A much more serious, and subtle, difficulty arises from the fact that 
the wave function 0~ of a system at time t is itself a random variable [-see 
(5.21)], while we wish to consider situations in which our systems each 
have the same (nonrandom) wave function 0. In the equal-time case this 
consideration led to no difficulty--and was barely noticed--since 0,  is non- 

random relative to the environment Y, upon which we there conditioned. 
For the multitime case, however, it is at first glance by no means clear how 
we should capture the stipulation that our systems each have wave 
function 0- 

One possibility would be to treat this stipulation as further condition- 
ing, i.e., to consider the conditional distribution of X~,..., X M given, among 
other things, that the wave functions 0,, of our respective systems at the 
respective times t~ ..... tM satisfy 0,, = 0 for all i. This would be a bad idea! 
The conditioning just described can affect the distribution of the configura- 
tions XI,..., XM in surprising, and uncontrollable, ways. 

For example, suppose that when the result of an observation of Xx is 
"favorable," the happy experimenter proceeds somehow to prepare the 
second system in state 0 at time t2, while if the result is "unfavorable," the 
depressed experimenter requires some extra time to recuperate, and 
prepares the second system in state 0 at time t; > t 2. In this situation X~ 
need not be independent of 0t2, so that conditioning on 0,2 may bias the 
distribution of X~. 

Moreover, we believe that this example is not nearly so artificial as it 
may at first appear. In the real world, of which the experimenters and their 
equipment are a part, which experiments get performed where and when 

822/67/5-6-3 



876 D~rr et  al. 

can, and typically will, be correlated with the results of previous 
experiments, with each other, and with any number of other factors, such 
as, for example, the weather, which we would not normally take into 
account. Therefore, stochastic conditioning can be a very tricky business 
here, yielding conditional distributions of a surprising, and thoroughly 
unwanted, character. 

What has just been said suggests that our multitime formulation is, 
while nonetheless inadequate, also perhaps not as general as we might 
want. The times at which our experiments are performed, and indeed the 
subsystems upon which they are performed, may themselves be random, 
and a more general formulation, like the one we shall give, should take this 
into account. However, we wish to emphasize that, as we shall see, the 
primary value of such a "random system" formulation is not increased 
generality. Rather, it is first of all simply the case that, strictly speaking, the 
systems upon which experiments get performed are, in fact, themselves 
r andom--no t  just the results, or the state of the system, but the time of 
the experiment as well as the specific system, the particular collection of 
particles, upon which we focus and act. Furthermore, when we properly 
take this into account, the difficulty we have been discussing vanishes! 

9. R A N D O M  S Y S T E M S  

Consider a pair a = (n, T), where T~ ~ (with T~> 0 if TH E INITIAL 
TIME is 0) and n is a splitting 

q =  (x, y ) -  (nq, n• (9.1) 

(see Section 5); we identify n with the projection ~ - ~ 3 N  ___~ ~3m onto the 
configuration of the (m-particle) x-system, with the components of x -  nq 

ordered, say, as in q. The splitting n comes together with n • the com- 
plementary projection, onto the coordinates of the environment (also 
ordered as in q). Thus, we may identify n with the subset of {1,..., N} 
corresponding to the particles of the x-system, a specifies a subsystem at a 
given time, for example, the system upon which we experiment and the 
time at which the experiment begins. (If indistinguishability were taken into 
account, our identification of rc would have to be modified accordingly. We 
might then associate it, for example, with a subset of R 3. See footnote 9.) 

Now allow both T and n to be random, i.e., allow T to be a real- 
valued, and n to be a projection-valued, function on the space ~ of initial 
configurations. (n may thus be identified with a random subset of 
{1 ..... N}.) For  a =  (n, T) we write 

X~ = n O T  (9.2) 
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for the configurat ion of the system and 

Y~ = zt ' -Qr  (9.3) 

for the configurat ion of  its environment.  23 
We say that a pair 

a = (~, T) (9.4) 

consisting of a r andom projection and a r andom time as described, is a 
random s y s t e m  provided 

{a = ao} e ~(Y~0) (9.5) 

for any (nonrandom)  a 0 = ( ~ o ,  t) )4 Here we use the notat ion 
s C e ~ ( W 1 ,  W2,...) to convey tha t /~4 ,  the indicator function of the event 
d c ~., is a function of W1, W2 ..... [-More precisely, ~ (  W1, W2,...) denotes 
the sigma-algebra generated by the r andom variables W1, W2,....] 

We emphasize that  for a r andom system or, the configuration X~ (Y~) 
of  the system (of its environment)  is doubly r a n d o m - - a  is itself random,  
and for a given value ao of a, X~0 (Y~0) is, of  course, still random. 

The condit ion (9.5) says that  the value of  a r andom system, i.e., the 
identity of the part icular  subsystem and time that  it happens to specify, is 
reflected in its environment.  In  practice, this value is expressed by the state 
of the experimenters, their devices and records, and whatever other  features 
of  the environment  form the basis of its selection.  It is for this reason that  
we usually fail to notice that  our  systems are random:  relative to "our-  
selves," which we naturally do not  think of as random, they are completely 

23 More explicitly, when ~ and T are random, J(~ is the random variable 

Xo(Q) = n(Q)(Qria)) (*) 

and similarly for Y~. 
24 The condition (9.5), which is formally what we need, technically suffers from "measure-0 

defects"~since a random time T will typically be a continuous random variable, the event 
{a = %} will typically have measure 0, while conditional probabilities, for which (9.5) is 
formally utilized, are strictly defined only up to sets of measure 0. This defect can be 
eliminated by replacing (9.5) by the condition that for any t there exist a number %(0 > 0 
such that 

{re = rt0, t-e<~ T<~ t} E~(Y(~o,,~ ) 

for all 0 < e < %(t), using which our formal analysis becomes rigorous via standard con- 
tinuity-density arguments. (Of course, if time were discrete, no such technicalities would 
arise. ) 
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determined. Notice also that  (9.5) fits nicely with the not ion of the wave 
function of a subsystem, as expressed, e.g., by (5.19). 25 

We shall write ~b~ for the (effective or condit ional)  wave function of 
the r andom system (~--given Q e ~, the wave function at time T(Q) of the 
system defined by ~(Q). Using the nota t ion of Eq. (5.21), we have that  

~ = ~rv,~ (9.6) 

where the subscript ~z makes explicit the dependence of ~9~ upon the 
splitting q = (x, y). Note  that  ip~ is a functional of both  a and Y~. 

The crucial ingredient in our  multitime analysis is the observat ion that  
the fundamental  condit ional  probabil i ty formula (6.1) remains valid for 
r a n d o m  systems: For  any r andom system a [-the condit ioning here on a 
can of  course be removed if a E g ( Y ~ )  or, more  generally, if ~h, e ~ ( Y o ) ,  
e.g., if ~h, = tp is constant,  i.e., n o n r a n d o m ]  

P(X~dx  l Y~, or)= ](po(x)]2 dx (9.7) 

which can in a sense be regarded as the most  compact  expression of the 
entire quan tum formalism. To see this, note that for any value ao = (~0, t) 
of a, we have that  on {a = ao} 

P(X~dx] Y~, a)=P(X~dx] Yo, a = a 0 )  

=P(Xoo~dxl Yoo, a = a o )  

=P(Xooedx] Y~o)=P(X, edx] Y,) 

= ]~p,(x)l 2 dx-  ](p,0(x)l 2 dx 

= [O~(x)l 2 dx (9.8) 

where we have used (6.1) and (9.5), as well as the obvious fact that  X~, Y~, 
and ~b~ agree respectively with X~0 ( - X , ) ,  Y~0 (- -Y,) ,  and ~b~0 ( = ~ , )  on 

25 While the preceding informal description may not appear to discriminate between (9.5) and 
the perhaps equally natural condition 

which we may formally write as 

{a=a0} E~(Yo) (t) 

a careful reading should convey (9.5). The conditions (9.5) and (t) are not, in fact, 
equivalent, nor even comparable. In practice both are satisfied, the validity of (t) deriving 
mainly from the existence of "clocks." We have defined the notion of random system using 
only (9.5) because this is what turns out to be relevant for our analysis. [Note also that, 
trivially, z e ~ (  Y,, a).] 
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{o=o0} .  [-The reader familiar with stochastic processes should note the 
similarity between (9.5) and (9.7) on the one hand, and the notions of stop- 
ping time and the strong Markov property from Markov process theory, 
on the other. Indeed, (6.1) can be regarded as a kind of Markov property, 
in relation to which (9.7) then becomes a strong Markov property.] 

10. M U L T I T I M E  D I S T R I B U T I O N S  

...every atomic phenomenon is closed in the sense that its observation is based 
on registrations obtained by means of suitable amplification devices with irre- 
versible functioning such as, for example, permanent marks on the photographic 
plate ... the quantum-mechanical formalism permits well-defined applications 
only to such closed phenomena... (Bohr, ref. 22, pp. 73 and 90) 

Now consider a sequence o- i = (zci, Ti), i =  1 ..... M, of random systems, 
ordered so that (with probability 1) 

TI <~ T2 <~ "'" <~ TM (10.1) 

We write Xi for X~,, Y~ for Yr and let 

g,= Y(L,,, G,) (lO.2) 

Suppose that for the wave function of the ith system we have 

O~,=O~ (lo.3) 

where 0~ is nonrandorn, i.e., (with probability !) the random wave function 
0~, is the specific wave function 0i. This will be the case if the requirement 
that the ith system have wave function ~'i forms part of the basis of selec- 
tion for this system, i.e., for o-i~for example, if the ith experiment, by prior 
decision, must be preceded by a successful preparation of the state Ot. 

Finally, suppose that 

X i e ~  for all i < j  (10.4) 

i.e., for all i < j, X i is a function of Yj and oj. This will hold, for example, 
if, with probability 1, each Xi is measured--if  the ith measurement has not 
been completed, and the result "recorded," prior to time Tj, then the ith 
system, together with the apparatus which measures it, must still be 
isolated at time Tj, from aj as well as from the rest of its environment, 
remaining so until the completion of this measurement. 
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Notice that since Oj is nonrandom, it follows from (10.4) and the 
fundamental conditional probability formula (9.7) that 

P(Xjedx j IX , , . . . ,X j  1)=P(Xj~dxjl Yj,~j) 

= lOj(xj)12 dxj 

Thus 

(10.5) 

P(X~ ~ dxi ,  i< . j )  

= P(Xie  dxi, i <~ j - 1 )  P(XjE dxj ] XI = XI,..., X j_  I = Xj 1) 

= P(X,~dx~ ,  i<. j -  1)IOj(x j ) l  2 dxj 

= II]/I(Xl)I 2 ' ' '  t@j(Xj)I 2 d X l "  .dxj  (10.6) 

and 

XI ..... X M are independent 

with each Xi having distribution given by [@i] 2 (10.7) 

As it stands, (10.7) is mildly useless, since the probability distribution 
P with respect to which it is formulated does not take into account any 
"prior" information, some of which we might imagine to be relevant to the 
outcomes of our sequence of experiments. Therefore, it is significant that 
our entire random system analysis [-including (10.1), (10.3), and (10.4)] 
can be relativized to any set ~ c ~ - - i . e . ,  we may replace (& P) by 
(Md, P"~), where P ~ ( d Q ) = P ( d Q l d d ) - - w i t h o u t  essential modification, 
provided the random systems a under consideration satisfy 

~ ( Y ~ ,  a) (lO.8) 

In particular, (10.7) is valid even with respect to P ~  provided that for all i 

.yr ~ (10.9) 

We might think of J/g as reflecting the "macroscopic state" at a time 
prior to all of our experiments, though one might argue about whether 
(10.9) would then be satisfied. Be that as it may, any event ~ describing 
any sort of prior information to which we could conceivably have access 
would be expected to satisfy (10.9), particularly if this information were 
recorded. 

Now suppose that g,i = ~ for all i. Then the joint distribution of 
X1,..., XM with respect to P ~  is precisely the same as in the equal-time 
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situation of Section 7. 26 Since the analysis there depended only upon this 
joint distribution, we may draw the same conclusions concerning empirical 
distributions and tests as before. We thus find for our sequence of 
experiments that typical initial configurations--typical with respect to P or 
P~r empirical statistics governed by the quantum formalism. 

Perhaps this claimed agreement with the quantum formalism requires 
elaboration. We have been explicitly concerned here only with the statistics 
governing the outcomes of position measurements. Now, we were also con- 
cerned only with configurations in our equal-time analysis of Section 7. But 
our results there directly implied agreement with the quantum formalism 
for the results of measurements of any observable: 

Our statistical conclusions there were valid regardless of whether or 
not the configurations--the Xi~were "measured." Thus, for the equal-time 
case the joint distribution of any functions Zi = f, (Xi) of the configurations 
must be inherited from the distribution of the Xi themselves. In particular, 
by considering subsystems of the form (5.4), where the apparatus 
"measures the observable"--i.e., self-adjoint operator--2~, with wave func- 
tions ~=Oi|  where ~bi is the initial(ized) wave function of the ith 
apparatus, letting Z~ be the outcome of this "measurement of Zf '  and using 
what we know about the joint distribution of the Xi, it follows that the Zi 
are independent, and, as in the last paragraph of Section 3, that each Zi 
must have the distribution provided by the quantum formalism, namely, 
that given by the spectral measure 

for 2~ in the state ~ .  (For a detailed account of how this comes about see 
refs. 14, 18, and 29.) 

The corresponding result for the multitime case does not, in fact, 
follow from (10.7). The latter do"es require that the configurations be 
"measured," and a "measurement of 2~" need not involve, and indeed may 
be incompatible with, a "measurement" of X~. 

But, while it does not follow from the result for the Xi, the corre- 
sponding result for "general measurements" does, in fact, follow from the 
analysis for the X~. We need merely suppose for the Zz what we did for the 
Xz, namely, that 

Z ~  for all i < j  (10.10) 

26 Notice that equal-time experiments are covered by our multitime analysis--all  the 7',. can 
be ident ical--and in this case (10.4) is automatically satisfied. However, for our earlier 
equal-time results it was necessary that ~, be the effective wave function, while here condi- 
tional is sufficient. 
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in order to conclude, for the sequence of outcomes Z i of "measurements  of 
observables" Zi  in states r  that  [with respect to pall for J /  satisfying 

(10.8)] 

Z1 ,..., Z M are independent  

with each Zi  having dis t r ibut ion given by p v21 (10.1 1) 

from which the usual  conclusions concerning empirical dis t r ibut ions and  
tests follow immediately.  27 

We emphasize that  the assumptions  (10.4), (10.10), and  (10.9) are 
minimal.  They demand  merely that facts abou t  results and  initial 

experimental  condi t ions  not  be "forgotten." Thus  they are hardly assump- 

tions at all, but  a lmost  the very condi t ions  essential to enable us, at the 
conclusion of our  sequence of experiments,  to talk in an informed m a n n e r  

about  the experimental  condi t ions  and results and  compare these with 

theory. 
Moreover,  it is not  hard to see that  if these condi t ions  are relaxed, the 

"predictions" should no t  be expected to agree with those of the q u a n t u m  

formalism (note that  by selectively "forgetting" results we can dramatical ly 

alter the statistics of those that  we have not  "forgotten"). This is a striking 

i l lustrat ion of the way in which Bohmian  mechanics does not  merely agree 

with the q u a n t u m  formalism, but,  e l iminat ing ambiguities,  i l luminates,  
clarifies, and  sharpens it. 28 

11. A B S O L U T E  U N C E R T A I N T Y  

That  the q u a n t u m  equi l ibr ium hypothesis p = [(pl 2 conveys the most 
detailed knowledge possible concerning the present configurat ion of a sub- 

27That Zi=fi(Xi) will in fact be the outcome of what would normally be considered a 
measurement of 2i can be expected only if ~ is the effective wave function of the ith system, 
and not merely the conditional wave function: The functional form of Z~ is based upon the 
evolution of a system initially with effective wave function q/~ interacting with a suitable 
apparatus but otherwise isolated. However, the conclusion (10.11) for Z~= fi(X~) is valid 
even for ~b i merely the conditional wave function, though in this case Zi may have little 
connection with what is actually observed. 

z~ The analysis we have presented does not allow for the possibility that with nonvanishing 
probability Ti = ~,  i.e., the conditions for the selection of ~r~ are never satisfied. Our results 
extend to this case provided that (X 1 ..... X~) and { T~+ 1 < oc } are conditionally independent 
given { Ti < oo } for all i = 1,..., M - 1, in which case our results are valid given { T M < oo }. 
Note that without the aforementioned conditional independence our results would not be 
expected to hold: Suppose, for example, that if the initial results are "unfavorable," the 
depressed experimenter destroys humankind, and systems no longer get prepared properly. 
Thus, conditioning on { T M < ~ } yields a "biased" sample. The preceding points to perhaps 
a different, albeit rather minor, ambiguity in the quantum formalism, of which Bohmian 
mechanics again forces one to take note, and in so doing to rectify. 
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system (of which the "observer" or "knower" is not a part--see point 23 of 
the Appendix), what we have called absolute uncertainty, is implicit in 
the results of Sections 7 and 10. 29 The key observation relevant to this 
conclusion is this: Whatever we may reasonably mean by knowledge, 
information, or certainty--and what precisely these do mean is not at all 
an easy question--i t  simply must be the case that the experimenters, their 
measuring devices, their records, and whatever other factors may form the 
basis for, or representation of, what could conceivably be regarded as 
knowledge of, or information concerning, the systems under investigation, 
must be a part of or grounded in the environment of these systems. 

The possession by experimenters of such information must thus be 
reflected in correlations between the system properties to which this infor- 
mation refers and the features of the environment which express or repre- 
sent this information. We have shown, however, that given its wave func- 
tion there can be no correlation between (the configuration of) a system 
and (that of) its environment, even if the full microscopic environment 
Y--itself grossly more than what we could conceivably have access to--is  
taken into account. 

Because we consider absolute uncertainty to be a very important 
conclusion, with significance extending beyond the conceptual foundations 
of quantum theory, we shall elaborate on how our results, for both the 
equal-time and the general multitime cases, entail this conclusion. The 
crucial point is that the possession of knowledge or information implies the 
existence of certain features of the environment, an environmentally based 
selection criterion, such that systems selected on the basis of this criterion 
satisfy the conditions expressed by this information. (For example, when a 
measuring device registers, or the associated computer printout records, 
that "IXI < 1," it should in fact be more or less the case that JXI < 1.) 

Suppose that our M systems of Section 7 have been chosen on the 
basis of some features of the environment, say by selection from an ensem- 
ble of M'systems, also of the form considered there. The selection criterion 
can be based upon any property of the environment Y, = Y of the original 

29 Note, however, that as far as knowledge of the past is concerned, it is possible to do a good 
deal better than what would be permitted by absolute uncertainty for knowledge of the pre- 
sent: Having prepared our subsystem in a specific (not-too-localized) quantum state, with 
known wave function tp, we may proceed to measure the configuration 2" of this system, 
thereby obtaining detailed knowledge of both its wave function and its configuration for 
some past time. But note well that the determination of the configuration may--indeed, as 
we show, must-- lead to an appropriate "collapse" of 0, and hence our knowledge of the 
(present) configuration will be compatible with p =  I0I 2 for the present wave function. 
(Note also that for quantum orthodoxy as well it is sometimes argued that knowledge of 
the past need not be constrained by the uncertainty principle.) 
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(preselection) ensemble. (We allow for a rather arbitrary selection criterion, 
though in practice selection would of course be quite constrained. In 
particular, a realistic selection criterion should perhaps be the "same" for 
each system; i.e., whether or not the ith system is selected should depend, 
for all i, upon the same property of Y relative to this system. However, we 
need here no such constraints.) 

Since, with respect to P~, the configurations of the systems of our 
original ensemble were independent, with each having distribution given by 
I~] 2, and since our selection criterion is based solely upon the environment 
Y of the original ensemble and in no way directly on the values of the con- 
figurations themselves, it follows that the configurations X1 ..... XM of our 
selected subsystems have precisely the same distribution (also relative to 
P~) as the original ensemble. Thus, for typical initial universal configura- 
tions, the empirical distribution of configurations across our selected 
ensemble will be given (approximately) by 1~9] 2, just as for the original 
ensemble. It follows that, whatever else it may be, our selection criterion 
cannot be based upon what we could plausibly regard as information 
concerning system configurations (more detailed than what is already 
expressed by L~I2). 

For the general case of multitime experiments as described in Sec- 
tion 10, the analysis is perhaps even simpler. In fact, for this case there is 
really nothing to do, beyond observing that any (environmentally based) 
selection criterion, whatever it may be, can be incorporated into the defini- 
tion of our random systems, as part of the basis for their selection. It thus 
follows from the results of Section 10 that no such criterion can be 
regarded as reflecting any information, beyond I~l 2, about the configura- 
tions of these systems. Therefore, no devices whatsoever, based on any 
present or future technology, will provide us with the corresponding know- 
ledge. In a Bohmian universe such knowledge is absolutely unattainable! 3~ 

30 The reader concerned that we have overlooked the possibility that information may some- 
times he grounded in nonconfigurational features of the environment, for example, in 
velocity patterns, should consider the following (recall as well footnote 8): (1) Knowledge 
and information are, in fact, almost always, if not always, configurationally grounded. 
Examples are hardly necessary here, but we mention one--synaptic connections in the 
brain. (2) Dynamically relevant differences between environments, e.g., velocity differences, 
which are not instantaneously correlated with configurational differences quickly generate 
them anyway. And we need not be concerned with differences which are not dynamically 
relevant! (3) Knowledge and information must be communicable if they are to be of any 
social relevance; their content must be stable under communication. But communication 
typically produces configurational representations, e.g., pressure patterns in sound waves. 
(4) In any case, in view of the effective product form (5.17), when a system has an effective 
wave function, the configuration Y provides an exhaustive description of the state of its 
environment (aside from the universal wave function 7~--and through it ~ - -wh ich  for 
convenience of exposition we are regarding as given--see also footnotes 18 and 20). 
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We emphasize that we do not claim that knowledge of the detailed 
configuration of a system is impossible, a claim that would be manifestly 
false. We maintain only that--as a consequence of the fact that the con- 
figuration X of a system and the configuration Y of its environment are 
conditionally independent given its wave function O--all such knowledge 
must be mediated by 0. And we emphasize that a major reason for the not 
insignificant length of our argument, as presented in Sections (~11, was the 
necessity to extract from the aforementioned conditional independence 
analogous conclusions concerning empirical correlations. 

From our conclusion that when a system has wave function 0 we 
cannot know more about its configuration X than what is expressed by 
10[ 2, it follows trivially that knowledge that its wave function is 0 similarly 
constrains our knowledge of the configuration. It also trivially follows that 
detailed knowledge of X, for example, that Xe  I for a given set of values 
I, entails detailed conclusions concerning the wave function, for example, 
that the (conditional) wave function of the system is supported by I (and 
even if the system does not have an effective wave function, we have that 
any density matrix describing the system must also be "supported" by I). 

Finally, in order to sharpen further the character of our absolute 
uncertainty, one more point must be made. We have focused here primarily 
on the statistical aspect of the wave function of a system. But any "absolute 
uncertainty" based solely upon the fact that knowledge of the configuration 
X of a system must be mediated by (knowledge of) some "object," in the 
sense that the distribution of X can be expressed simply in terms of that 
"object," may be sorely lacking in substance if the "object" is merely 
statistical. In such a case, knowledge of the "object" need amount to 
nothing more than knowledge that I" has the distribution so expressed. 

What lends substance to the "absolute uncertainty" in Bohmian 
mechanics--and justifies our use of that phrase--is the fact that the rele- 
vant "object," the wave function 0, plays a dual role: it has, in addition to 
its statistical aspect, also a dynamical one, as expressed, e.g., in Eqs. (5.8) 
and (5.11). Thus, knowledge of the wave function of a system, which 
sharply constrains our knowledge of its configuration, is knowledge of 
something in its own right, something "real," and not merely knowledge 
that the configuration has distribution [012 . 

Moreover, the detailed character of this dynamical aspect is such that 
a wave function with narrow support quickly spreads, owing to the disper- 
sion in Schr6dinger's equation, to one with broad support, a change which 
generates a similar change in the distribution of the configuration. It 
follows that the unavoidable price we must pay for sharp knowledge of the 
present configuration of a system is at best hazy knowledge of its future 
configuration, i.e., of its "effective velocity." In particular, our absolute 
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uncertainty embodies absolute unpredictability. More generally, the usual 
uncertainty relations for noncommuting "observables" become a corollary 
of the quantum equilibrium hypothesis p = I012 as soon as the dynamical 
role of the wave function is taken into account; a detailed analysis can be 
found in refs. 14, 18, and 29. 

12. KNOWLEDGE AND NONEQUIL IBRIUM 

The alert reader may be troubled that we have established results 
about randomness and uncertainty, results of a flavor often associated with 
"chaos" and "strong ergodic properties," without having to invoke any of 
the hard estimates and delicate analysis usually required to establish such 
properties. Indeed, our analysis neither used nor referred to any such 
properties. How can this be? 

The short answer is quantum equilibrium, with all that the notion of 
equilibrium entails and conveys, an answer upon which we shall elaborate 
in the next section. Here we would like merely to observe that what is truly 
remarkable is not absolute uncertainty, irreducible limitations on what we 
c a n  know, but rather that it is possible to know anything at all! 

We take (the possibility of) knowledge, our information-gathering and 
storing abilities, too much for granted. (And we conclude all too readily 
that the unknowable is unreal.) Of course, it is not at all surprising that 
we should do so, in view of the essential role such abilities play in our 
existence and survival. But that there should arise stable systems 
embodying (what can reasonably be regarded as) such abilities is a perhaps 
astonishing fact about the way our universe works, about the laws of 
nature! 

The point is that we, the knowers, are separate and distinct from the 
things about which we know, and know in marvelous detail. How can 
there be, between completely disjoint entities, sufficiently strong correla- 
tions to allow for a representation in one of these entities of detailed 
features of the other? Indeed, such correlations are absent in thermo- 
dynamic equilibrium. With respect to (any of the distributions describing) 
global thermodynamic equilibrium, disjoint systems are more or less inde- 
pendent, and systems are more or less independent of their environments, 
facts incompatible with the existence of knowledge or information. 

What renders knowledge at all possible is nonequilibrium. In fact, 
rather trivially, the very existence of the devices and records, not to men- 
tion brains, yielding or embodying any sort of information is impossible 
under global equilibrium. And, according to Heisenberg, "every act of 
observation is by its very nature an irreversible process, ''(37) and thus 
fundamentally nonequilibrium. 
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Thus, the very notion of quantum equilibrium, of equilibrium of 
configurations relative to the wave function, already suggests the 
unknowability of these configurations beyond the wave function. Our 
results merely provide a firm foundation for this suggestion. What is, 
however, striking is the simplicity of the analysis and how absolute and 
clean are the conclusions. 

Insofar as equilibrium is associated with the impossibility of 
knowledge, equilibrium alone does not provide an adequate perspective on 
our analysis. In particular, our results say perhaps little of physical 
relevance unless some knowledge is possible, e.g., of the wave function 
of a particular system, or of the results of observations. But for this 
nonequilibrium is essential. 

13. Q U A N T U M  E Q U I L I B R I U M  A N D  T H E R M O D Y N A M I C  
( N O N ) E Q U I L I B R I U M  

tin] a complete physical description, the statistical quantum theory 
would ... take an approximately analogous position to the statistical mechanics 
within the framework of classical mechanics. (Einstein, in ref. 50, p. 672) 

We would like now to place quantum equilibrium within a broader 
context by comparing it with classical thermodynamic equilibrium. 

According to the quantum equilibrium hypothesis, when a system has 
a wave function ~, the distribution p of its configuration is given by 

p = l ~ l  ~ (13.1) 

Similarly, the Gibbs postulate of statistical mechanics asserts that for a 
system at temperature T, the distribution p of its phase space point is given 
by 

e--mkT 
p (13.2) 

Z 

where H is the classical Hamiltonian of the system (including, say, the 
"wall potential"), k is Boltzmann's constant, and Z, the partition function, 
is a normalization. 

In addition, we found that (13.1) assumed sharp mathematical form 
when understood as expressing the conditional probability formula (6.1). 
Equation (13.2) is perhaps also best regarded as a conditional probability 
formula, for the distribution of the phase point of the system given that of 
its environment--after all, the Hamiltonian H typically involves interac- 
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tions with the environment, and the temperature T (like the wave function) 
can be regarded as a function of (the state of) the environment. (How 
otherwise would we know the temperature?) Furthermore, for a rigorous 
analysis of equilibrium distributions in the thermodynamic limit--i.e., of 
(the idealization given by) global thermodynamic equil ibrium--the equa- 
tions of Dobrushin (27) and of Lanford and Ruelle, (41) stipulating that 
(13.2)--regarded as expressing such a conditional distr ibution--be satisfied 
for all subsystems, often play a defining role. 31 

Moreover, what we have just described is only a part  of a deeper and 
broader analogy, between the scheme 

classical mechanics ~ equilibrium statistical mechanics 

thermodynamics (13.3) 

which outlines the (classical) connection between the microscopic level of 
description and a phenomenological formalism on the macroscopic level; 
and the scheme 

Bohmian mechanics 

quantum equilibrium: statistical mechanics relative to the wave function 

the quantum formalism (13.4) 

which outlines the (quantum) connection between the microscopic level 
and another phenomenological formal ism-- the  quantum measurement for- 
malism. We began this section by comparing only the middle components 
of (13.3) and (13.4), but it is in fact the full schemes which are roughly 
analogous. 

In particular, note that the middle of both schemes concerns the equi- 
librium distribution for the complete state description of the structure on 
the left with respect to the state for the structure on the r ight-- the macro- 
state, as described by temperature (or energy) and, say, volume; or the 
quantum state, specified by the wave function. However, the quantum 
formalism does not live entirely on the macroscopic level, since the wave 

31 However, for a universe which, like ours, is not in global thermodynamic equilibrium, there 
is presumably no probability distribution on initial phase points with respect to which the 
probabilities (13.2), for all subsystems which happen to be "in thermodynamic equilibrium" 
and all times, are the conditional probabilities given the environments of the subsystems. In 
other words, roughly speaking, (13.2) is not equivariant. [See K r y l o v ,  (39) as well as the 
discussion after (13.4).] 
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function for, say, an atom is best regarded as inhabiting (mainly) the 
microscopic level, at least for Bohmian mechanics. 

The second arrow of (13.3) is, of course, associated primarily with the 
work of Gibbs(34); the corresponding arrow of (13.4), upon which we have 
not focused here, will be the subject of ref. 29 (see also refs. 14 and 18). We 
have here focused on the first arrow of (13.4), i.e., on deriving the quantum 
equilibrium hypothesis from Bohmian mechanics. The corresponding arrow 
of (13.3) remains an active area of research, though it does not appear 
likely that a comprehensive rigorous analysis will be forthcoming any time 
soon. Conventional wisdom to the contrary notwithstanding, the problem 
of the rigorous justification, from first principles, of the use of the 
"standard ensembles," i.e., of the derivation of randomness governed by 
detailed probabilities, is far more difficult for classical thermodynamic 
equilibrium than for quantum theory! 

How can this be? How is it possible so easily to derive the quantum 
equilibrium hypothesis from first principles (i.e., from Bohmian mechanics), 
while the corresponding result for thermodynamics--the rigorous deriva- 
tion of the Gibbs postulate from first principles--is so very difficult? 
The answer, we believe, is that "pure equilibrium" is easy, while non- 
equilibrium, even a little bit, is hard. In our nonequilibrium universe, 
systems which happen to be in thermodynamic equilibrium are surrounded 
by, and arose from, (thermodynamic) nonequilibrium. Thus, with thermo- 
dynamic equilibrium we are dealing with islands of equilibrium in a sea of 
nonequilibrium. But with quantum equilibrium we are in effect dealing with 
a global equilibrium, albeit relative to the wave function. 

What makes nonequilibrium so very difficult is the fact that for non- 
trivial dynamics it is extremely hard to get a handle on the evolution of 
nonequilibrium ensembles adequate to permit us rigorously to conclude 
much of anything concerning the present distribution that would arise from 
a given nonequilibrium distribution in the (distant) past. To establish 
"convergence to equilibrium" for times t ~ oo (mixing) is itself extremely 
difficult, but even this would be of little physical relevance, since we 
generally deal with, and can survive only during, times much earlier than 
the epoch of global thermodynamic equilibrium. 

We should perhaps elaborate on why global equilibrium is so easy. 
A key aspect of equilibrium is, of course, stationarity--or equivariance. But 
how can this be sufficient for our purposes? Mere stationarity is not nor- 
mally sufficient in a dynamical system analysis to conclude that typical 
behavior embodies randomness governed by the stationary distribution. 
Such "almost everywhere"-type assertions usually require the ergodicity of 
the dynamics. Why did we not find it necessary to establish some sort of 
ergodicity? 
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The answer, we believe, lies in another critical aspect of the notion of 
equilibrium, shared by the schemes (13.3) and (13.4), and arising from the 
fact that both schemes are concerned with large "systems," with the ther- 
modynamic limit as it were. In equilibrium, whether quantum or ther- 
modynamic, most configurations or phase points are "macroscopically 
similar": quantities given by suitable spatial averages--e.g., density, energy 
density, or velocity fluctuations for thermodynamic equilibrium, and 
empirical correlations for quantum equilibrium--are more or less constant 
over the state space, in a sense defined by the equilibrium distribution. To 
say that a system is in equilibrium is then to say that its configuration or 
phase point is typical, in the sense that the values of these spatial averages 
are typical. 

Now while the individual subsystems with which we have been 
concerned may be microscopic, our analysis, in fact, is effectively a "large- 
system analysis." This is manifest in the equal-time analysis of Section 7, 
and for the general, multitime analysis it is implicit in our measurability 
conditions (10.4) and (10.8), which are plausible only for a universe having 
a large number of degrees of freedom. Thus, just as for a system already in 
thermodynamic equilibrium, we have no need for the ergodicity of the 
dynamics--just "stat ionarity '--since the kind of behavior we wish to 
establish occurs for a huge set of initial configurations, the "overwhelming 
majority." 

(It might also be argued that we have, in fact, established for Bohmian 
mechanics a kind of effective Bernoulliness, and hence an effective 
ergodicity. And, again, the fact that we can do this with little work comes 
from the "thermodynamic limit" aspect of our analysis.) 

The reader should compare the impossibility of perpetual motion 
machines, which is associated with the scheme (13.3), with that of 
"knowledge machines," as expressed by absolute uncertainty, associated 
with the scheme (13.4). In both cases the existence of devices of a certain 
character is precluded by general theoretical considerations--more or less 
equilibrium considerations for both-- ra ther  than by a detailed analysis of 
the workings of the various possible devices, 

14. GLOBAL E Q U I L I B R I U M  BENEATH N O N E Q U I L I B R I U M  

But to admit things not visible to the gross creatures that we are is, in my 
opinion, to show a decent humility, and not just a lamentable addiction to 
metaphysics. (Bell ~ 

The schemes (13.3) and (13.4) refer to different universes, a classical 
universe and a quantum (Bohmian) universe. Since our universe happens 
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to be a quantum one, it would perhaps be better to consider, instead of 
(13.3), the analogous quantum scheme 32 

Bohmian mechanics ~ quantum statistical mechanics 

thermodynamics ( 14.1 ) 

While the second arrow of (14.1) is standard, and presumably non- 
problematical, research on the first arrow has not yet reached its infancy. 

Note that it would make little sense to ask for a derivation of quan- 
tum statistical mechanics from the first principles provided by orthodox 
quantum theory. The very meaning of orthodox quantum theory is so 
entwined with processes, such as measurements, in which thermodynamic 
considerations play a crucial role that it is difficult to imagine where such 
a derivation might begin, or, for that matter, what such a derivation could 
possibly mean! (And insofar as Bohmian mechanics clarifies the meaning 
and significance of the wave function of a system, and permits a coherent 
analysis of the microscopic and macroscopic domains within a common 
theoretical framework, it may well be that the last word has not yet been 
written concerning the connection represented by the second arrow.) 

If nonequilibrium is an essential aspect of our universe, and if con- 
figurations are in quantum equilibrium, i.e., pure equilibrium relative to the 
wave function, what then is the source, in our universe, of nonequilibrium? 
What is it that is not in equilibrium? The wave function, of course--both 
the universal wave function ~u and, as a consequence, subsystem wave func- 
tions ~. At the same time, the middle of the scheme (14.1) can be regarded 
as concerned with the distribution of the subsystem wave function t) for 
subsystems which happen to be in thermodynamic equilibrium. But by 
exploiting global thermodynamic nonequilibrium we are able to see beneath 
tile thermodynamic-macroscopic level of description, while with global 
quantum equilibrium there is no quantum nonequilibrium to reveal the 
system configuration X beneath the system wave function ~. 

It is important, however, not to succumb to the temptation to con- 
clude, as does Heisenberg, (37) that configurations therefore provide merely 
an "ideological superstructure" best left out of quantum theory; for, as we 
have seen, the very meaning of the wave function ~ of a subsystem requires 
the existence of configurations, i.e., those of its environment. And when we 

32 While it can be shown that in the "macroscopic limit" 

Bohmian mechanics ~ classical mechanics 

a proper understanding of thermodynamics must  be in terms of the actual behavior of the 
constituents of equilibrium systems, i.e., quan tum behavior. 

822/67/5-6-4 
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determine the wave function of a system we do so on the basis of the con- 
figuration of the environment. Recall also that both aspects of the wave 
function of a subsystem, the statistical and the dynamical, cannot 
coherently be formulated without reference to configurations. It is therefore 
not at all astonishing that orthodox quantum theory, by refusing to accept 
configurations as part of the description of the state of a system, has led to 
so much conceptual confusion. 

Note that the fact that thermodynamics seems to depend only upon ~O, 
and not on any contribution to the total thermodynamic entropy from the 
actual configuration X, is an immediate consequence of quantum equi- 
librium: For a universe in quantum equilibrium the entropy associated 
with configurations is maximal, i.e., constant as a functional of ~, and thus 
plays no thermodynamic role. 

A crucial feature of our quantum universe is the peaceful coexistence 
between global equilibrium (quantum) and nonequilibrium (thermo- 
dynamic), providing us with what we may regard as an "equilibrium 
laboratory," a glimpse, as it were, of pure equilibrium, with all the sur- 
prising consequences it entails. Our analysis has shown how the interplay 
between the corresponding levels of structure--the nonequilibrium level 
given by the wave function, and, beneath the level of the wave function, 
that of the particles, described by their positions, in equilibrium relative to 
the wave function--leads to the randomness and uncertainty so charac- 
teristic of quantum theory. We shall explore elsewhere (3~ how this 
(hierarchical) structure itself naturally arises, and what its deeper 
significance might be. (See also Bohm. ~17~) 

We have argued, and believe our analysis demonstrates, that quantum 
randomness can best be understood as arising from ordinary "classical" 
uncertainty--about what is there but unknown. The denial of the existence 
of this unknowable--or only partially knowable--reality leads to 
ambiguity, incoherence, confusion, and endless controversy. What does it 
gain us? 

A P P E N D I X :  R A N D O M  P O I N T S  

In the following remarks we expand upon concepts introduced in this 
paper, placing our conclusions within a broader perspective and comparing 
ours with related approaches. 

1. Bohmian mechanics is what emerges from Schr6dinger's equation, 
which is said to describe the evolution of the wave function of a system of 
particles, when we take this language seriously, i.e., when we insist that 
"particles" means particles. Thus, Bohmian mechanics is the minimal inter- 
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pretation of nonrelativistic quantum theory, arising as it does from the 
assertion that a familiar word has its familiar meaning. 

In particular, if Bohmian mechanics is somehow strange or unaccept- 
able, it must be because either Schr6dinger's equation, or the assertion that 
"particles" means particles, or their combination is strange or unacceptable. 
Now the assertion that "particles" means particles can hardly be regarded 
as in any way problematical. On the other hand, Schr6dinger's equation, 
for a field on configuration space, is a genuine innovation, though one that 
physicists by now, of course, take quite for granted. However, as we have 
seen in Section 2, when it is appropriately combined with the assertion that 
"particles" means particles, its strangeness is, in fact, very much diminished. 

2. Quantum mechanics is notoriously nonlocal,(52) a novelty which is 
in no way ameliorated by Bohmian mechanics. In fact, "in this theory an 
explicit causal mechanism exists whereby the disposition of one piece of 
apparatus affects the results obtained with a distant piece. ''(2) We wish to 
emphasize, however, that relative to the wave function, Bohmian mechanics 
is completely local: the nonlocality in Bohmian mechanics derives solely 
from the nonlocality built into the structure of standard quantum theory, 
as provided by a wave function on configuration space. 

That the guiding wave, in the general case, propagates not in ordinary three- 
space but in a multidimensional-configuration space is the origin of the 
notorious "nonlocality" of quantum mechanics. It is a merit of the de 
Broglie-Bohm version to bring this out so explicitly that it cannot be ignored. 
(Bell ~5~) 

3. A rather fortunate property of Bohmian mechanics is that the 
behavior of the parts of subsystems--reflects that of the whole. Indeed, if 
this were not the case, it would have been difficult, if not impossible, 
to have ever discovered the full theory. We believe that a major reason 
nonlocality is so often regarded as problematical is not nonlocality per se 
but rather that it suggests the breakdown of precisely this feature. 

4. Notice that the effective wave function ~p is, in effect, a "collapsed" 
wave function. Thus, our analysis implicitly explains the status and role of 
"collapse of the wave packet" in the quantum formalism. (See also 
point 21, recalling that the Wigner formula ~6~ for the joint distribution of 
the outcomes of a sequence of quantum measurements, to which we there 
refer, is usually based upon collapse.) 

In particular, note that the effective wave function of a subsystem 
evolves according to Schr6dinger's equation only when this system is 
suitably isolated. More generally, the evolution ~p(t) of the effective wave 
function defines a stochastic process, one which embodies collapse in just 
the right way--with respect to the conditional probability distribution 
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given the (initial) configuration of the environment of the composite system 
which includes the apparatus, with 0 the effective wave function of the 
system alone, i.e., not including the apparatus. For details see ref. 29. 

Note also that the very notion of effective wave function, as well as its 
behavior, depends upon the location of the split between the "observed" 
and the "observer," i.e., between the system of interest and the rest of the 
world, a dependence whose importance has been emphasized by Bohr, (22) 
von Neumann, (56) and a great many others (see, for example, refs. 12, 40, 
and 43). In particular, while the effective wave function will "collapse" 
during measurement if the apparatus is not included in the system, it 
need not, in principle, collapse if the apparatus is included, precisely as 
emphasized by yon Neumann. (56) But yon Neumann was left with the 
"measurement paradox," while with Bohmian mechanics no hint of paradox 
remains. 

5. The fact that knowledge of the configuration of a system must be 
mediated by its wave function may partially account, from a Bohmian 
perspective, for how the physics community could identify the state of a 
quantum system--its complete description--with its wave function without 
encountering any practical difficulties. Indeed, the conclusion of our 
analysis can be partially summarized with the assertion that the wave func- 
tion 0 of a subsystem represents maximal information about its configura- 
tion X. This is primarily because of the wave function's statistical role, but 
its dynamical role is also relevant here. Thus it is natural, even in Bohmian 
mechanics, to regard the wave function as the "state" of the system. 

6. It has been clear, at least since von Neumann, ~56) that for all prac- 
tical purposes the quantum formalism, regarded in strictly operational 
terms, is consistent. However, it has not, at least for many (e.g., Einstein), 
been clear that the "full" quantum theory, regarded as including the asser- 
tion of "completeness" based upon Heisenberg's uncertainty principle-- 
which has itself traditionally been regarded as arising from the apparent 
impossibility of certain measurements described in more or less classical 
terms--is also consistent. (See ref. 54 for a recent expression of related 
concerns.) If nothing else, Bohmian mechanics establishes and makes clear 
this consistency--even including absolute uncertainty. 

Indeed, as is well known, Einstein tried for many years to devise 
thought experiments in which the limitations expressed by the uncertainty 
principle could be evaded. The reason Einstein persisted in this endeavor 
is presumably connected with the fact that the arguments presented by 
Heisenberg and Bohr against such a possibility were, to say the least, not 
entirely convincing, relying, as they did, on a peculiar, nearly contradic- 
tory, combination of quantum and classical "reasoning." In this regard, 
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recall that in order to rescue (a version of) the uncertainty principle from 
one of Einstein's final onslaughts, (21) Bohr felt compelled to exploit certain 
effects arising from Einstein's general theory of relativity. (21) 

However, from the perspective of a Bohmian universe the uncertainty 
principle is sharp and clear. In particular, from such a perspective it makes 
no sense to try to devise thought experiments by means of which the 
uncertainty principle can be evaded, since this principle is a mathematical 
consequence of Bohmian mechanics itself. One could, of course, imagine a 
universe governed by different laws, in which the uncertainty principle, and 
a great deal else, would be violated, but there can be no universe governed 
by Bohmian mechanics--and in quantum equilibrium--which fails to 
embody absolute uncertainty and the uncertainty principle which it entails. 

7. The notion of effective wave function developed in Section 5 
should perhaps be compared with a related notion of Bohm, namely, the 
"active" piece of the wave function ~19'2~ (see also Bohm(13)): If gt is of the 
form (5.12) with the supports of ~g(l~ and 7 t(2) "sufficiently disjoint," then 
~(i) is "active" if the actual configuration Q is in the support of 5 u(i/. [See 
(5.13) and the surrounding discussion.] When this active wave function 
appropriately factorizes--see (5.6)--the (active) wave function of a sub- 
system could be defined in terms of the obvious factor. 

This notion of subsystem wave function will agree with ours if, as is 
likely to be the case, the active and inactive pieces have suitably disjoint 
y-supports, and it will otherwise disagree. (In this regard see also point 20.) 
For example, if 

~e~')(x, y) = O~')(x) g,(y) (A.1) 

with 0 (11 and 0 (2) suitably disjoint (e.g., because the x-system is macro- 
scopic and...) then the "active" wave function of the x-system is the 
appropriate 0 (i/, while using our notion, the x-system has effective wave 
function 0(1)+ 0 (21. Note, in particular, that with our notion the effective 
wave function of the universe is the universal wave function gt, not the 
active piece of gt. 

Our notion of effective wave function and not the notion based upon 
the active piece--has a distinctly epistemological aspect: While for both 
choices we have that "p = 1012," the latter will be the conditional distribu- 
tion given the configuration of the environment only if 0 agrees with our 
effective (or conditional) wave function. Moreover, whenever we can be 
said to "know that the x-system has wave function 0," then the x-system 
indeed has effective wave function 0 in our sense. 

Note that while both of these choices are somewhat vague, in that they 
appeal to the notion of the "macroscopic '--or to some such not ion--our  
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effective wave function, when it exists, is, as we have seen, completely 
unambiguous. Moreover, as we have also seen, with our notion reference 
to something like the macroscopic is not critical. Removing such a 
reference--as we did in defining the notion of the conditional wave 
function--leads to a precise formulation which remains entirely adequate 
(in fact, perfect) for our purposes. But for the choice based on the active 
piece, removing such a reference would lead to utter vagueness. 

There is, of course, no real physics contingent upon a particular choice 
of (notion of) "effective wave function"; rather, this choice is simply a 
matter of convenience of expression, of how we talk most efficiently about 
the physics. But such considerations can be quite important! 

8. Sometimes it is helpful to try to imagine how things appear to 
God. This is of course audacious, but, in fact, the very activity of a 
physicist, attempting to find the deepest laws of nature, is nothing if not 
audacious. Indeed, one might even argue that the defining activity of the 
physicist is the search for the divine perspective. 

Be that as it may, to create a universe God must first decide upon the 
onto logy--on what there is--and then on the dynamical laws--on how 
what is behaves. But this alone would not be sufficient. What is missing is 
a particular realization, out of all possible solutions, of the dynamics--the 
one corresponding to the actual universe. In other words, at least for a 
deterministic theory, what is further required is a choice of initial condi- 
tions. And unless there is somehow a natural special choice, the simplest 
possibility would appear to be a completely random initial condition, with 
an appropriate natural measure for the description of this randomness 
(whatever this might mean, even given the measure). The notion of 
typicality so defined would, in a sense, be an essential ingredient of the 
theory governing this hypothetical universe. 

For  Bohmian mechanics, with somehow given initial wave function ~o, 
this measure of typicality is given by the quantum equilibrium distribution 
I~0] 2. Moreover, the dynamics itself is also generated by ~go. It seems most 
fitting that God should design the universe in so efficient a manner that a 
single object, the wave function gto, should generate all the necessary 
(extra-ontological) ingredients. 

9. Regarding the question of universal initial conditions, we should 
perhaps contrast the issue of the initial configuration with that of the initial 
wave function. Insofar as the latter is a nonequilibrium wave function, the 
initial wave function must correspond to low entropy-- i t  must be very 
atypical, i.e., of a highly improbable character. As has been much 
emphasized by Penrose, (49) in order to understand our nonequilibrium 
world we must face the problem of why God should have chosen such 
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improbable initial conditions as demanded by nonequilibrium. On the 
other hand, for the universal initial configuration--in quantum 
equilibrium--we of course have no such problem. On the contrary, quan- 
tum randomness itself, including even absolute uncertainty, arising as it 
does from quantum equilibrium, in effect requires no explanation. (Con- 
cerning the choice of initial universal wave function, see also point 13.) 

10. Naive agreement with the quantum formalism demands the 
existence of a small set of bad initial configurations, corresponding to 
outcomes which are very unlikely but not impossible. It is thus hard to see 
how our results could be improved upon or significantly strengthened. 

More generally, for any theory with probabilistic content, particularly 
one describing a relativistic universe, we arrive at a similar conclusion: 
Once we recognize that there is but one world (of relevance to us), only 
one actual space-time history, we must also recognize that the ultimate 
meaning of probability, insofar as it employed in the formulation of the 
predictions of the theory, must be in terms of a specification of typicality-- 
one such that theoretically predicted empirical distributions are typical. 
When all is said and done, the physical import of the theory must arise 
from its provision of such a notion of typical space-time histories (at the 
very least of "macroscopic" events), presumably specified via a probability 
distribution on the set of all (kinematically) possible histories. And given 
a theory, i.e., such a probability distribution, describing a large but finite 
universe, atypical space-time histories, with empirical distributions dis- 
agreeing with the theoretical predictions, are, though extremely unlikely, 
not impossible. 

11. It is quite likely that the fiber 9.~= { Q ~ I  Y,= Y} of ~ for 
which I1,= Y, discussed in Section 7, is extremely small, owing to the 
expansive and dispersive effects of the Laplacian A in Schr6dinger's equa- 
tion. If so, it follows that any regular (continuous) ~0 (or I~Pol 2) should be 
approximately constant on ~ [  (as on any sufficiently small set of initial 
conditions). This would imply that P~, the conditional measure given ~.~, 
should be approximately the same as the uniform distribution--Lebesgue 
measure--on ~[ ,  so that typicality defined in terms of quantum equi- 
librium agrees with typicality in terms of Lebesgue measure. 

Now, as we have already indicated in Section 4, under more careful 
scrutiny this argument does not sustain its appearance of relevance. 
However, it may nonetheless have some heuristic value. 

12. We wish to emphasize that a byproduct of our analysis, quite 
aside from the relevance of this analysis to the interpretation of quantum 
theory, is the clarification and illumination of the meaning and role of 
probability in a deterministic (or even nondeterministic) universe. 
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Moreover, our analysis of statistical tests in Section 7-- the very triviality of 
this analysis; see Eqs. (7.8) and (7.10)--sharply underlines the centrality of 
typicality in the elucidation of the concept of probability. 

13. We should mention some examples of nonequilibrium (initial) 
universal wave functions: 

(1) Suppose that physical space is finite, say the 3-torus 3-3 rather 
than N3, and suppose, say, that the potential energy V=0.  Let 
~r/O(ql . . . . .  qN) = 1 if all qi ~ B, where B c ~]-3 is a "small" region in physical 
space, and be otherwise 0. Then gt o is a nonequilibrium wave function, 
since an equilibrium wave function should be "spread out" over 3 -3 . 
Moreover, the initial quantum equilibrium distribution on configurations is 
uniform over configurations of N particles in B. 

More generally, any well-localized gt o is a nonequilibrium wave 
function. And if physical space is ~3, any localized or square-integrable 
wave function is a nonequilibrium wave function. 

(2) For  a nonequilibrium wave function of a rather different charac- 
ter, consider the following: Take 1-3 again for physical space, but instead 
of considering free particles, suppose that V arises from Coulomb inter- 
actions, with half of the particles having charge + e and half - e .  Now sup- 
pose that ~0 is constant, ~u 0 = 1 on 3-3. (Thus, quantum equilibrium now 
initially corresponds to a uniform distribution on configurations.) That this 
~Vo, though "spread out," is nevertheless a nonequilibrium wave function 
can be seen in various ways. Dynamically, the Schr6dinger evolution 
should presumably lead to the formation of "atoms," of suitable pairing in 
the (support properties of the) wave function. Entropically, ~o is very 
special. An equilibrium ensemble of initial wave functions is determined 
by the values of the infinite set of constants of the motion given by the 
absolute squares of the amplitudes with respect to a basis of energy eigen- 
functions. Wave functions in this ensemble are then specified by the phases 
of these amplitudes. A random choice of phases leads to an equilibrium 
wave function, which should reflect the existence of "atoms." On the other 
hand, the wave function ~u o = 1 corresponds to a particular, very special 
choice of phases, so that "atoms cancel out." 

Note also that this example is relevant to the Penrose problem men- 
tioned in point 9. What choice of initial wave function could be simpler-- 
and thus in a sense more natural - - than the one which is everywhere con- 
stant? And, again, while it might at first glance seem that this choice 
corresponds to equilibrium, the attractive (in both senses) effects of the 
Coulomb interaction presumably imply that this is not so! 

From a classical perspective the situation is similar: The initial state in 
which the particles are uniformly distributed in space with velocities all 0 



Quantum Equilibrium and Absolute Uncertainty 899 

(or with independent Maxwellian velocities) is a nonequilibrium state. In 
fact, an infinite amount of entropy can be extracted from suitable clustering 
of the particles, arising from the great volume in momentum space 
liberated when pairs of oppositely charged particles get close. (Of course, 
for Newtonian gravitation--as well as for general relativity--this tendency 
to cluster is, in a sense, far stronger still.) 

14. To account for (the) most (familiar) applications of the quantum 
formalism one rarely needs to apply (the conclusions of) our quantum 
equilibrium analysis to systems of the form (5.4): Randomness in the result 
of even a quantum measurement usually arises solely from randomness in 
the system, randomness in the apparatus making essentially no contribu- 
tion. This is because most real-world measurements are of the scattering- 
detection type--and a particle (or atom ...) will be detected more or less 
where it is at. Think, for example, of a two-slit-type experiment, or of the 
purpose of a cloud chamber, or of a Stern-Gerlach measurement of spin. 

15. When all is said and done, what does the incorporation of actual 
configurations buy us? A great deal! It accounts for: 

a. randomness 
b. absolute uncertainty 
c. the meaning of the wave function of a (sub)system 
d. collapse of the wave packet 
e. coherent--indeed, familiar--(macroscopic) reality 

Moreover, it makes possible an appreciation of the basic significance of the 
universal wave function gt, as an embodiment of law, which cannot be 
clearly discerned without a coherent ontology to be governed by some law. 

16. Recall that in principle the wave function ~ of a (sub)system 
could depend upon the universal wave function g~ and on the choice of 
system ~ = (7c, T), as well as on the configuration Y of the environment of 
this system. In practice, however, in situations in which we in fact know 
what 0 is, it must be given by a function of Y alone, not depending upon 
~, nor even on ~ (for "reasonable" nonequilibrium ~u). After all, what else, 
beyond Y, do we have at our disposal to take into account when we con- 
clude that a particular system has wave function ~? In particular, ~u is 
unknown, apart from what we can conclude about it on the basis of Y (and 
perhaps some a priori assumptions about reasonable initial ~o'S; but even 
if ~0 were known precisely, this information would be of little use here, 
since solving Schr6dinger's equation to obtain 7 ~ would be out of the 
question!). 

Thus, whatever we can in practice conclude about ~ must be based 
upon a universal funct ion--of  Y. It would be worthwhile to explore and 
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elucidate the details of this function, analyzing the rules we follow in 
obtaining knowledge and trying to understand the validity of these rules. 
However, such considerations are not directly relevant to our purposes in 
this paper, where our goal has been primarily to establish sharp limitations 
on the possibility of knowledge rather than to analyze what renders it at 
all possible. We have argued that the latter problem is perhaps far more 
difficult than the former, and, indeed, that this is not terribly astonishing. 

17. In view of the similarity between Bohmian mechanics and 
stochastic mechanics, (44~[6) for which similarity see refs. 35 and 28, all of our 
arguments and results can be transferred to stochastic mechanics without 
significant modification. More important, the motivation for stochastic 
mechanics is the rather plausible suggestion that quantum randomness 
might originate from the merging of classical dynamics with intrinsic ran- 
domness, as described by a diffusion process, and with "noise" determined 
by h. Insofar as our results demonstrate how quantum randomness 
naturally emerges without recourse to any such "noise," they rather drasti- 
cally erode the evidential basis of stochastic mechanics. 

18. The analysis of Bohmian mechanics presented here is relevant to 
the problem of the interpretation and application of quantum theory 
in cosmology, specifically, to the problem of the significance of p = j~j2 on 
the cosmological level--where there is nothing outside of the system to 
perform the measurements from which p = J0J 2 derives its very meaning 
in orthodox quantum theory. 

19. Our random system analysis illuminates the flexibility of 
Bohmian mechanics: It illustrates how joint probabilities as predicted by 
the quantum formalism, even for configurations, may arise from measure- 
ment and bear little resemblance to the probabilities for unmeasured 
quantities. And our analysis highlights the mathematical features which 
make this possible. This flexibility could be quite important for achieving 
an understanding of the relativistic domain, where it may happen that 
quantum equilibrium prevails only on special space-time surfaces. (2s) Our 
(random system) multitime analysis illustrates how this need entail no 
genuine obstacle to obtaining the quantum formalism. [Our argument here 
of course involved the natural hypersurfaces given by {t = const }, but the 
only feature of these surfaces critical to our analysis was the validity of 
quantum equilibrium, or, more precisely, of the fundamental conditional 
probability formula (6.1). ] 

20. A notion intermediate between that of the effective wave function 
and that of the conditional wave function of a subsystem, a more-generaL 
effective wave function which, like the effective wave function, is "stable," 
may be obtained by replacing, in the definition (5.17)-(5.18) of effective 
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wave function, the reference to macroscopically disjoint y-supports by 
"sufficiently disjoint" y-supports. This notion of more-general-effective 
wave function is, of course, rather vague. But we wish to emphasize that 
the y-supports of ~b and ~u• may well be sufficiently disjoint to render 
negligible the (effects of) future interference between the terms of (5.17)--so 
that if (5.18) is satisfied, ~p will indeed fully function dynamically as the 
wave function of the x-system--without their having to be actually macro- 
scopically disjoint. 

In fact, owing to the interactions---expressed in Schr6dinger's 
equation among the many degrees of freedom, the amount of 
y-disjointness in the supports of q~ and 7 t• will typically tend to increase 
dramatically as time goes on, with, as in a chain reaction, more and more 
degrees of freedom participating in this disjointness (13'42'64'38) (see also 
ref. 12). When the effects of this dissipation or "decoherence" are taken into 
account, one finds that a small amount of y-disjointness will often tend 
quickly to become "sufficient," indeed becoming "much more sufficient" as 
time goes on, and very often indeed becoming macroscopic. Moreover, if 
ever we are in the position of knowing that a system has more-general- 
effective wave function 0, then ~ must be its effective wave function, since 
our knowledge must be based on or grounded in macroscopic distinctions 
(if only in the eye or brain). 

Concerning dissipation, we wish also to emphasize that in practice the 
problem is not how to arrange for it to occur, but how to keep it under 
control, so that superpositions of (sub)system wave functions retain their 
coherence and thus may interfere. 

21. If we relax the condition (10.3), requiring that tbo~ be nonrandom, 
and stipulate instead merely that 

~ai@~(Zl ..... Z i_l )  (A.2) 

we find that ZI,..., Z M have joint distribution given by the familiar 
(Wigner) formula (6~ (see also refs. 56 and 1). 

22. We wish to compare (what we take to be the lessons of) 
Bohmian mechanics with the approach of Gell-Mann and Hartle 
(GMH). (~1"32) Unhappy about the irreducible reference to the observer in 
the orthodox formulation of quantum theory, particularly insofar as 
cosmology is concerned, they propose a program to extract from the quan- 
tum formalism a "quasiclassical domain of familiar experience," which, if 
we understand them correctly, defines for them the basic ontology of quan- 
tum theory. This they propose to do by regarding the Wigner formula 
(referred to in points 4 and 21), for the joint probabilities of the results of 
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a sequence of measurements of quantum observables, as describing the 
probabilities of objective, i.e., not-necessarily-measured, events--what they 
call alternative histories. Of course, owing to interference effects one 
quickly gets into trouble here unless one restricts this use of the Wigner 
formula to what they call alternative (approximately) decohering histories, 
for which the Wigner formula can indeed be regarded as defining 
(approximate) probabilities, which are additive under coarse-graining. 
Thus far GMH in essence reproduce the work of Griffiths (36) and 
Omnes. (47) But, as GMH further note, the condition of (approximate) 
decoherence by itself allows for far too many possibilities. They thus intro- 
duce additional conditions, such as "fullness" and "maximality," as well as 
propose certain (as yet tentative) measures of "classicity" to define an 
optimization procedure they hope will yield a more or less unique 
quasiclassical domain. (They also consider the possibility that there may be 
many quasiclassical domains, each of which would presumably define a 
different physical theory.) 

As in our analysis of Bohmian mechanics, universal initial condi- 
t ions-for  GMH the initial universal wave function (or density ma t r ix ) -  
play a critical role. And just as in Bohmian mechanics, the wave function 
does not provide a complete description of the universe, but rather attains 
physical significance from the role it plays in generating the behavior 
of something else, something physically primitive--for GMH the quasi- 
classical domain. 

Insofar as nonrelativistic quantum theory is concerned, a significant 
difference between Bohmian mechanics and the proposal of GMH is that 
the latter defines a research program, while the former is an already 
existing, and sharply formulated, physical theory. And as far as relativistic 
quantum theory is concerned, we believe that, appearances to the contrary 
notwithstanding, the lesson of Bohmian mechanics is one of flexibility (see 
also point 19), while the approach of GMH is rigid. In saying this we have 
in mind, on the one hand, that GMH insist (1) that the possible ontologies 
be limited by the usual quantum description, i.e., correspond to a suitable 
(possibly time-dependent) choice of self-adjoint operators on Hilbert 
space; and (2) that this ontology be constrained further by the quantum 
formalism, demanding that its evolution be governed by the Wigner 
formula--so that for them, but not for Bohmian mechanics, the considera- 
tion of decoherence indeed becomes essential, bound up with questions of 
ontology. 

On the other hand, one lesson of Bohmian mechanics is that ontology 
need not be so constrained. While the quantum formalism must--and for 
Bohmian mechanics does-~emerge in measurement-type situations, the 
behavior of the basic variables, describing the fundamental ontology, out- 
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side of these situations need bear no resemblance to anything suggested by 
the quantum formalism. (Recall, in fact, that it quite frequently happens 
that simple, symmetric laws on a deeper level of description lead to a less 
symmetric phenomenological description on a higher level.) Indeed, these 
basic variables, whether they describe positions, or field configurations, or 
what have you, need not even correspond to self-adjoint operators. That 
they rather trivially do in Bohmian mechanics is, in part, merely an artifact 
of the equivariant measure's being a strictly local functional of the wave 
function, which was in no way crucial to our analysis. 

In particular, while dissipation and decoherence are relevant both to 
Bohmian mechanics and to GMH,  for G M H  they are crucial to the 
formulation of the theory, to the specification of an ontology, while for 
Bohmian mechanics they are relevant only on the level of phenomenology. 
And insofar as the formation of new theories is concerned, the lesson of 
Bohmian mechanics is to look for fundamental microscopic laws 
appropriate to the (or a) natural choice of ontology, rather than to let the 
ontology itself be dictated by some law, let alone by what is usually 
regarded as a macroscopic measurement formalism. 

It is perhaps worth considering briefly the two-slit experiment. In 
Bohmian mechanics the electron, indeed, goes through one or the other of 
the two slits, the interference pattern arising because the arrival of the elec- 
tron at the "photographic" plate reflects the interference profile of the wave 
function governing the motion of the electron. In particular, and this is 
what we wish to emphasize here, in Bohmian mechanics a spot appears 
somewhere on the plate because the electron arrives there; while for G M H  
"the electron arrives somewhere" because the spot appears there. 

23. There is one situation where we may, in fact, know more about 
configurations than what is conveyed by the quantum equilibrium 
hypothesis p = 1~12: when we ourselves are part of the system! See, for 
example, the paradox of Wigner's friend. (59) In thinking about this situa- 
tion it is important to note well that, while it may be merely a matter of 
convention whether or not we choose to include, say, ourselves in the sub- 
system of interest, the wave function to which the quantum equilibrium 
hypothesis refers--that of the s u b s y s t e m ~ e p e n d s  crucially on this choice. 

24. We have shown, in part here and in part in ref. 29, how the quan- 
tum formalism emerges within a Bohmian universe in quantum equi- 
librium. Thus, evidence for the quantum formalism is evidence for quantum 
equilibrium--global quantum equilibrium. This should be contrasted 
with the thermodynamic situation, in which the evidence points toward 
pockets of thermodynamic equilibrium within global thermodynamic non- 
equilibrium. 
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The reader may wish to explore quantum nonequilibrium. What sort 
of behavior would emerge in a universe which is initially in quantum non- 
equilibrium? What phenomenological formalism or laws would govern 
Such behavior? We happen to have no idea! We know only that such a 
world is not our world! Or do we? 
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